
Ya3dag
Other tips

What you always wanted to know about Ya3dag.

Based on V2.22 release of July 15, 2024

Edition history

14.11.2004 RR: First edition.
16.12.2004 RR: Picture of the level during loading.
11.01.2005 RR: TravelOverland Level description reworked.
24.08.2008 RR: Translation to English.
24.01.2012 RR: Updated based on V1.35 release of February 1, 2012.
19.08.2012 RR: Updated based on V1.40 release of August 19, 2012.
10.02.2013 RR: Updated based on V1.41 release of February 12, 2013.
30.03.2013 RR: Updated based on V1.42 release of June 30, 2013.
17.08.2014 RR: Updated based on V1.51 release of August 17, 2014.
29.10.2014 RR: Updated based on V1.52 release of November 8, 2015.
03.03.2018 RR: Updated based on V2.00 release of March 4, 2018.
07.05.2018 RR: Updated based on V2.01 release of May 7, 2018.
24.07.2018 RR: Updated based on V2.02 release of July 22, 2018.
20.07.2019 RR: Updated based on V2.10 release of July 21, 2019.
23.11.2019 RR: Updated based on V2.12 release of November 24, 2019.
31.10.2020 RR: Updated based on V2.14 release of November 1, 2020.
14.07.2023 RR: Updated based on V2.22 release of July 15, 2024.

Table of contents

1. Introduction
2. Games
2.1 About GameConfiguration.txt
2.2 Directories and important files
3. Gamedata
3.1 About books
3.2 About rolls
3.3 About recipes
3.4 About items
4. Replacing or Adding Content
4.1 About images
5. HUD files and language
5.1 Introduction
5.2 HUD script commands
5.3 HUD script expressions
5.4 HUD script reference names
5.5 HUD script constant names
5.5 HUD script constant names
6. Others
6.1 Notice of a level in the travel agency TravelOverland
6.2 Time length of the day
6.3 Displaying a level-image while loading
6.4 Support of multiple languages
6.5 Fonts
6.6 Voxel setup files

1. Introduction

This document describes some of Ya3dag things for which any other documentation
is not the right place.

One goal of Ya3dag is to add new content to the game easily.

To get access to game scripts and documentation files from the project, unzip
the game data in Ya3dag\BaseQ2\Q2T_BaseQ2.pkz and Ya3dag\RRGame\Q2T_RRGame.pkz.
Rename the .pkz file extension to .zip and unzip it into Ya3dag\BaseQ2
respectively Ya3dag\RRGame.

2. Games

Ya3dag offers the possibility to add a game (or modification).

Here are the rules to add such a game:

• Create a subdirectory for your game. Let the name start with 'Mod' to make
clear this is a game directory.

• Add the file GameConfiguration.txt (see later for description).
NOTE: This file may not be inside a pack file (.pkz or .zip).

• Add the file GameImage.jpg. This is used as preview image in Ya3dags
'Games' dialog.
NOTE: This file may not be inside a pack file (.pkz or .zip).

• Add the file default.cfg. This file specifies initial keyboard layout,
display settings, intro file (alias d1) and initial map (alias newgame).

• The into file is placed in the pics\Intro directory and must have the file
extension cfg. It is a plain text file and can be edited with notepad.
Take a look at the existing files to learn about the intro scripting
language.

• Add game related data.

Here are the rules to switch between installed games:

• A game has it's own subdirectory
• This directory must hold the files

GameConfiguration.txt
GameImage.jpg

• Ya3dags main menu entry 'Games' allows switching between the games.
This entry is only offered if there are two or more games existing.

• There must be one game existing for Ya3dag to startup.
• If there is only one games/modifications at startup, this one will be

selected for playing.

2.1 About GameConfiguration.txt

The file GameConfiguration.txt specifies this settings for a game:

• Section [GameDescription]
Setup game name and description. This information is used for Ya3dags
'Games' dialog. Text formatting as described in the documentation
Ya3dag_Scripting_Language.pdf, chapter ‘Text attributes for dialog texts‘
is usable here. Until now, there is no multi-language support for this
text settings.

• Section [GameFeatures]
Dis-/Enable same game specific features.
* FeatureTerrain Terrain usage dis-/enabled
* FeatureVoxels Voxels usage dis-/enabled

Per game the usage of terrain can be enabled or disabled.
This allows a more efficient game data management.

• Section [DataGamedir]
Specify for some data (player figures, textures, …) to use files from the
game directory only or also from the base directory.

• Section [GameDLL]
The setting Recipes_LoadAtStartup specify a file with recipes to be loaded
at startup of the game (the YaVoxel game use this feature).
Other settings define the position, frames and background images for the
in-game dialogs or messages and the iBag menu.

• Section [GUI Colors]
Specify colors to modify background images for inventory, chest
dialog,

• Section [MainMenu]
Things for the main menu. Name and position for up to three background
images. Enable the network (or multiplayer) dialog. Position, size and
background images for the main menu entries.

• Section [MenuBanner]
A background image for the header of each menu dialog is defined here.
Also the size and color of a dialog header is specified here.

• Section [MenuMisc]
Miscellaneous menu settings. Text colors, button sizes and such things.

Take a look at some ‘GameConfiguration.txt‘ files to learn more.

2.2 Directories and important files

Above you see some explorer screenshots of a Ya3dag installation.

And now a brief description of some directories and important files:

• Ya3dag is the root directory. All other directories/files are below this
root.

• Ya3dag\Quake2Terrain_Win32.exe is the game engine. Start this to execute
Ya3dag. This is part of the source download.

• Ya3dag*.dll are some other .dll files needed to run Quake2Terrain.exe.
• Ya3dag\BaseQ2 is the base data directory. The data below this directory is

common to all games.
• Ya3dag\BaseQ2\Q2Tgame_IA-32.dll is a so called game-dll. There can be one

in each game directory. The one in BaseQ2 is the fallback.
• Ya3dag\BaseQ2\quake2RR.ent is a setup file for Ya3dags editor. There can

be one in each game directory. The one in BaseQ2 is the fallback.
• Ya3dag\ModLego is one of Ya3dags games. The data below this directory is

specific to this game.
• Ya3dag\ModLego\levels holds the map for this game. These files can (for

now) not be put into a pack file.
• Ya3dag\ModLego\music holds the music for this game. These files can (for

now) not be put into a pack file.
• Ya3dag\Ya3dag_Docs holds documentation.
• Pack files are zip archives. These files have the file extension pkz or

zip.

Please note that there is a tool named ‘Ya3dag_minizip.exe‘ too build such
archives from scratch.

This is an explorer screenshot of the Ya3dag\Baseq2 directory after unpacking
the pack file ‘Q2T_BaseQ2.pkz‘. It shows the typical directories of a Ya3dag
game. If you are used to Q2 games, most of them is known to you.

To access game data, the following search order is used:
1) game directory, file exists in the directory structure.
2) game directory, file exists in a pack file of the game directory.
3) BaseQ2 directory, file exists in the directory structure.
4) BaseQ2 directory, file exists in a pack file of the BaseQ2 directory.

Use the knowledge about the search order if you want to replace contents.

Now a brief description of this subdirectories:

• env, holds environment images.
• fonts, hold font files.
• gamedata, holds actor scripts, book files, recipes, …. See elsewhere in

this manual.
• languages, multi-language support. The files inside here contains

translations of texts.
• maps, holds map models. This are .bsp models. Larger buildings are made

out of several small .bsp models. You can find bridges, cargo boxes,
graves, walls and such things here. The ‘Qolle99‘ can be used to build new
models.

• models, holds .md2 or .md3 models. This models are used for items,
weapons, plants, animals, monsters, level decoration (skeletons, dead
animals, vases and such things here), …

• particles, holds images used for game effects.
• pics, holds images for some game data.
• Players, holds player models together with skins and sound files.
• scripts, holds shader files. These files are compatible to Q3 shader files

and describe surface effects of textures.
• sound, holds sounds for weapons, items, animals, environment, …
• sprites, holds images for some game data.
• textures, holds images for .bsp models and for terrain. The ‘Q2T‘

subdirectory holds data files specific for terrain.

Some other commonly used directories:

• level, holds ‘.qtr‘ files. This are Ya3dags level files. Use Ya3dags
editor to make such files.

• levelshots, holds a loading image for each level.
• music, level music. Ya3dag supports .mp3 .ogg and .mid music files.

3. Gamedata

Gamedata can be found in the subdirectory 'gamedata' of each game. Besides
scripts (see documentation Ya3dag_Scripting_Language.pdf), there are books,
roles and recipes.

3.1 About books

• Books will be picked up by the players or will be given to the player.
Books will be stored in the inventory.

• Activate the book in the inventory or press the b key to read the books.
Navigate through the books with the [,], Enter and Escape keys. Also the
mouse wheel is usable here.

• Add books to the level with the editor action:
Objects/Add object/Item/Other/Book

Select Objects/Selected object
With the property message you choose one of the book files from the sub-
directory gamedata. Book file names begin with Book and have the file
extension txt. The default for the property message is BookDefault.txt.

• Example for a book file:

; BookFirstHelp.txt
;
; Handbook for the adventurer
;
; Max. 17 lines of the following with.
;123456789012345678901234567890123456
;
; The first line is used as header line.
;
;123456789012345678901234567890123456
Handbook First Aid
^1# +^r Next / Previous book
^1Escape^r Close book

 Level: ^2$Level
 My name: ^2$Name
 Difficulty: ^2$Skill
 Day / hour: ^2$DayNr/$HourNr
 Monsters: ^2$Monsters
 Secrets: ^2$Secrets
[End Of File]

Lines starting with ; are comment lines. The first line is as the book

title. Lines can. A line can have a maximum of 37 characters. A book has
up to 17 lines. Note the colored text (see Ya3dag_Scripting_Language.PDF,
chapter „Text attributes for dialog texts“).

Books have their own set of $-variables:
$HourNr Days since begin of the game.
$DayNr Hour of the day.
$Skill Easy, medium or hard.
$Name The name of the player.
$Level Name of the level.
$Monsters Number of killed/total monsters in the level.
$Secrets Number of found/total secrets in the level.

3.2 About rolls

• Rolls are activated when they are touched by the player.

• Rolls show its text only once on the screen.

• Add books to the level with the editor action:
Objects/Add object/Item/Other/Roll

Select Objects/Selected object
With the property message you choose one of the roll files from the sub-
directory gamedata. Roll file names begin with Roll and have the file
extension txt. The default for the property message is RollDefault.txt.

• Use rolls for hints, tips or explanations.

• Example for a roll file:

; RollDefault.txt

;
; Max. 24 lines.
; The first line is used as header line.
;
;xxxxxxxxxxxxxxxxxxxxxxxxxx
^5^yA roll
This roll is not
important for the
upcoming tasks.
[End Of File]

Lines starting with ; are comment lines. The first line is as the roll

title. Lines can. A line can have a maximum of 27 characters. A book has
up to 24 lines. Note the colored text (see Ya3dag_Scripting_Language.PDF,
chapter „Text attributes for dialog texts“).

3.3 About recipes

• Recipes are Yad3dags method to manufacture new items. Recipes will be
collected as well as other items. First, all ingredients of the recipe
must be in owned by the player. After that, the new item can be
manufactured. The availability of ingredients is displayed each time.

• To load a specific files with recipes at startup of the games specify this
file inside the Section [GameDLL] with the setting Recipes_LoadAtStartup.

• Recipes can be placed in the map (with the editor) to be picked up by the
players or will be given to the player by actors.

• Adding recipes to the level with the editor action:
Objects/Add object/Item/Other/Recipe

Select Objects/Selected object
With the property message you choose one of the recipe files from the sub-
directory gamedata. Recipe file names begin with Recipe and have the file
extension txt. The default for the property message is RecipeDefault.txt.

• Crafting is done in the inventory dialog (using a 2x2 crafting grid) or in
other specialized dialogs. For example, the crafting table dialog has a
3x3 crafting grid.

Use the mouse to move to ingredients from the inventory to the crafting
grid.
The manufactured item is moved with the mouse into the inventory.
Click the green book to open the ‚recipe book‘ dialog. This displays all
existing recipes. Also, the required ingredients and other instructions
for the production are shown here.

Example for a recipe file:

// Recipe_MagicLamp.txt
//
// Description
// -----------
//
// * Empty lines are ignored.
//
// * Comments begin with a '//' characters.
//
// * Data definitions are enclosed in curly brackets.
// A name before the curly bracket specify the type of data.
//
// * Data members are inside the curly brackets.
// * Key:
// Name the data member. This has to end in a double colon.
// * Data
// Depends from the type of data needed. This can be play text
// (without blanks, aka a number). Text with blanks must be
// enclosed by apostrophes. Other text can be enclosed by
// apostrophes.
//
// * RecipeGroup:
// ------------
// Recipes can be grouped together. This groups allows a faster
// access to icons inside the recipe dialog.
//
// * Name:
// Name of group.
// The groups are referenced by the 'recipes' via this name.
// There can be only one entry with this name, only the first
// one is used.
//
// * Description:
// A text displayed for this icon group inside the recipe
// dialog.
//
// * Icon:
// An image displayed for this icon group inside the recipe
// dialog.
//
// * Recipe:

// -------
//
// * Name:
// Name of the recipe. There can be multiple recipes with the
// same name.
//
// * Group:
// Group this recipe belongs to.
// NOTE: If the group is not know the recipe is assigned to the
// first group.
// NOTE: If there is no group, a dummy group with the name
// 'Miscellaneous' is constructed.
//
// * Type: Type of recipe. This can be one of:
// crafting_shapeless A shapeless crafting recipe.
// The ingredients can be on any
// place in the grafting grid.
// Each 'Ingredient' setting may have one
// item only.
// crafting_shaped A shaped crafting recipe.
// The ingredients must have the same
// or a mirrored place as indicated
// by the 'Ingredient' settings.
//
// * Out:
// This is a optional number followed by an item class name.
// The number is the amount of items produced by this recipe.
//
// * Ingredient:
// This settings holds one to three item class names.
// * shapeless recipes
// One item class name per setting.
// Up to 9 lines are possible.
// * shaped recipes hold
// Up to three item class names per setting.
// Up to 9 lines are possible.
// Use a '-' character to indicate an empty slot.
// * There can be additional lines with a number followed
// by 'Money' or 'Health'.
// This ingredients are taken from the player.
//

RecipeGroup: {
 Name: "Magic items"
 Description: ""
 Icon: "pics/i_mana"
}

Recipe: {
 Name: "Magic lamp"
 Group: "Magic items"
 Type: "crafting_shapeless"
 Out: "item_MagicLamp" // Magic lamp
 Ingredient: "item_lamp" // Lamp
 Ingredient: "150 Mana" // Mana
}

// -------- End Of File --------

It's simple.
Only name the ingredients and the amount needed. See the file Items.txt for the
class names of items.
Lines starting with ; are comment lines.

3.4 About Items

The file Items.txt is the database of all items in the game. The most important
thing is the class name of the item. This is used as reference to an item in
actor scripts, recipes or editor data. In addition to the model also the item
type, graphic gimmicks, weight, price and description is give here.

The initial place of Items.txt is in BaseQ2/gamedata.
In fact all ItemsXXX.txt files found inside the gamedata directory of BaseQ2 or
the current game are added.

To use the items in the editor, enter them in the file quake2RR.ent.
Per game the can be a file gamedata/EditorEntitiesMod.ent to have specify editor
definitions for a game.

Take a look at this file to learn more.

4. Replacing or Adding Content

Any contents can be replaced. See also the chapter ‚directories and important
files‘ to learn about the search order of files.

Any contents may be added. Some new content is handled automatically, while
other content somewhere else must be mentioned.

4.1 About images

Image formats supported: png, tga, jpg, pcx, wal, lim.
If there are images with the same base name but different file extensions, the
precedence is in the order named above. So a tga file is used before a pcx file.

Lim is Ya3dags link-image data file format.

• Create a file with the extension '.lim' (Create a new notepad file with
the help of the explorer).

• With notepad write in the name of an existing texture. If the filename of
the texture is replaced with an asterik, the filename of the .lim file is
used as image name.

 Example 2:
 * In directory 'textures\Q2T\tex\Wall' create the
 file 'misc_13_q1_ground1_7.lim'.
 * Write in the text
 textures/Quake/ground1_7.jpg

 Example 1:
 * In directory 'textures\Q2T\tex\Misc' create the
 file 'Wall_22c.lim'.
 * Write in the text
 textures/Wall/*
 to use the file textures/Wall/Wall_22c.jpg

 ==> In the Ya3dag terrain editor, the texture
 misc_13_q1_ground1_7 is listed, but used is
 the texture ground1_7.jpg from the quake
 directory. Note that also the material files
 _norm, _depth and _gloss are loaded too.

 Benefits:
 * Terrain textures in the Q2T subdirectory can be linked
 to an other existing textures.
 Every texture can be used as terrain texture
 without wasting space on the hard disk.
 * Also material textures like _norm, _depth or _gloss
 can link to other files.
 Use this textures multiple times.
 * Link saves memory/texture space because textures
 can be multipled used but are loaded only once.

Texture layers.

Texture layers are handled automatically inside Ya3dag. The layer must just
exist and Ya3dag adds them to the base texture.
Texture layers are handled for .bps model textures, terrain textures
and .md2/.md3 model skins.

All texture layers are optional except the base texture (the others are NOT
loaded without it). The layers can have different file extensions. As example
besides the base texture ‚metal1_4.jpg‘ in the BaseQ2\textures\Quake directory,
there are the files ‚metal1_4_depth.jpg‘, ‚metal1_4_gloss.jpg‘ and
‚metal1_4_norm.jpg‘.

Normal data has the name suffix "_norm" or "_normal". Can have alpha channel
with height data for offsetmapping/reliefmapping.
This layer is usable for .bsp textures, terrain textures and terrain splatters.

Height data has the name suffix "_bump" or "_depth". This is not loaded if there
is a normal data file with alpha channel. The height data is needed for
offsetmapping/reliefmapping.
This layer is usable for .bsp textures, terrain textures and terrain splatters.

Gloss data has the name suffix "_gloss. This layer is used as specular color map
(the color of reflected light).
This layer is usable for .bsp textures only (until now).

Glow data has the name suffix "_gloss", "_decal", "_glow", "_add" or "_blend".
If the file has an alpha channel, the image layer is blended (by the alpha
channel) else the image layer is added (is a glow effect).
This layer is usable for .bsp textures, terrain textures, terrain splatters and
model skins.

_TextureData.cfg

This file is available in most textures directories. It specifies additional
features of a texture like surface flags, contents, light value, animations and
a scale factor. There is a column called ‚relief‘ to automatically generate
height and normal data from a base image file.

Surface flags (like SURF_WARP) and contents (like CONTENTS_SOLID) should be known
to Q2 mappers.
Qoole99 also looks at this data files.

5. HUD files and language

5.1 Introduction

You can open and edit the hud files with a simple texteditor. The hud parser
uses a simple script language to interpret hudcommands. The scriptparser
traverses the hud files from top to bottom and executes it line by line, just
like a batch file.

Ya3dag lays out hud elements on a virtual grid of 640x480 units size. The
constants #WIDTH and #HEIGHT store this predefined grid size.

Ya3dag's default hud can be found inside .pkz files which can be opened with
your favourite zip archiver. Make sure you do not modify any of the pkz files
that come with the game.
Your HUD files can be located inside the huds subdirectory of the BaseQ2 or any
other game folder. Create that directory if it does not yet exist.
To change the HUD in game, go to the Options/InGame menu and select it in the
HUD.
The possible selections are subdirectories of the huds folder.
Populate it with a statusbar_single.txt file for a single player game or with a
statusbar_dm.txt file for a death match game.

If a statusbar_dm.txt file is missing, the statusbar_single.txt will be used
instead.

Note that also all in game dialogs, message boxes, book displays and the iBag
menu use the HUD macro language to format their information for display on the
screen.

5.2 HUD script commands

Commands must be lower case.

Commend

• //
Skip text after until the end of the line

• /*
Skip text until a */ character sequence (C-style comments).

Cursor positioning

• xl <value>
X position from the left side of the physical screen

• xr <value>
X position from the right side of the physical screen

• yb <value>
Y position from the bottom of the physical screen

• yt <value>
Y position from the top of the physical screen

• xv <value>
X position from the left of a centered rectangle of size 320 * 240

• yv <value>
X position from the top of a centered rectangle of size 320 * 240

• xc <value>
X position relative to the center of the physical screen

• yc <value>

Y position relative to the center of the physical screen
• xi <value>

Increment X position
• yi <value>

Increment Y position
• xs <value>

X position from the last saved position
• ys <value>

Y position from the last saved position
• xys

Save current position

Drawing

A standard HUD character is 8 screen units high, the width depends from the
selected game font. Big HUD characters have a width of 16 and an height of 24
screen units.
Text modifiers (see manual Ya3dag_Scripting_Language.pdf) can be used to color,
change size, underline, ... text strings.

In all cases <stat> is an integer representing the stat(us) message item
to be presented (see later for ‚STAT_* values‘).
If not otherwise noted, the images are located inside the ‚pics‘ subdirectory.

• col <r> <g>
Used to change RGB colors of text, images and bars. The values have a
range from 0.0 to 1.0.

• cola <r> <g> <alpha>
Used to change RGB colors and alpha of text, images and bars. The values
have a range from 0.0 to 1.0.

• colr
Reset RGB colors and alpha to the default of 1.0

• cols1
Store last RGB and alpha as color 1.

• cols2
Store last RGB and alpha as color 2.

• coll1
Load color 1 to RGB and alpha.

• coll2
Load color 2 to RGB and alpha.

TIP: Set up to two colors at begin of your script file for a color scheme and
use them with coll1 coll2 if needed.

• string <string>
Output the <string>.

• s1 <string>
This is the short form of ‚string‘.

• string2 <string>
Output the <string> highlighted.

• s2 <string>
This is the short form of ‚string2‘.

• stat_string <value>
Use <value> value as index to one of the ‚configstrings‘ (whatever this
is). This is used for the pickup-string of inventory icons.

• stat_num <value>
Use <value> value and output as number string.

• stat_num2 <value>
Use <value> value and output as number string with a minimum with of 3
characters.

• cstring <string>
Output the <string> relative to center of current x position.

• c1 <string>
This is the short form of ‚cstring‘.

• cstring2 <string>
Same as ‚cstring‘ but highlighted.

• c2 <string>
This is the short form of ‚cstring2‘.

• cstring3 <string>
Save as ‚cstring2‘ but with a frame around the text.

• c3 <string>
This is the short form of ‚cstring3‘.

• num <field width> <value>
Output value as number string using big HUD characters. <field width> is
the number of character to used (to keep it proper aligned).

• hnum
Use the <stat> value for the player health and output with a field with of
3. Also colors the output on low values.

• anum
Use the <stat> value for the player ammo and output with a field with of
3. Also colors the output on low values.

• rnum
Use the <stat> value for the player armor and output with a field with of
3. Also colors the output on low values.

• barh <value> <MaxValue> <ID> <SizeFak>
Output a horizontal bar. <ID> identifies one of the
‚bics/bar/barh<ID>.png‘ images. The value is related to <MaxValue> and
that part of the image is drawn. <SizeFak> scales the size of the bar
image.

• barv <value> <MaxValue> <ID> <SizeFak>
Same as ‚barh‘ but vertical an using images ‚bics/bar/barv<ID>.png‘.

• barhi <value> <MaxValue> <ID> <SizeFak>
A variant of the barh command. The bar drawing direction is inverted.

• barvi <value> <MaxValue> <ID> <SizeFak>
A variant of the barv command. The bar drawing direction is inverted.

• box <width> <height> <BGndImage>
Draw a box (with characters from the current font) for <width> * <height>
characters. <BGndImage> is the name for a background image.

• box2 <width> <height> <BGndImage> <FrameImage>
Draw a box for <width> * <height> characters. <BGndImage> is the name for
a background image. The frame is constructed from the image <FrameImage>.

• pic <value>
Draw a picture from a <stat> number. Use <stat> value as index to one of
the ‚configstrings‘ (whatever this is). The string there is the name for a
picture of an inventory icons. Size to draw is taken from the image.

• pics <size> <value>
Same as above but the square size is given.

• picsc <size> <value> <color-nr>
Same as above but additional a color number is given.
This is used for colored picked up items. See: %PICKUP_COLOR_NR

• psn <size> <ImageNr>
Draw a picture from a <ImageNr> number. Use <ImageNr> as index to one of
the ‚configstrings‘ (whatever this is). The string there is the name for a
picture of an inventory icons. A square size is given as argument.

• picn <image>
Draw a picture from the string <image>. Size to draw is taken from the
image.

• picsn <size> <image>
Same as above but the square size is given.

• pics2n <width> <height> <image>
Draw a picture from the string <image>. With and height for drawing are
arguments.

• pican <image>
Draw a transparent picture from the string <image>. Size to draw is taken
from the image.

• picasn <size> <image>
Same as above but the square size is given.

• picas2n <width> <height> <image>
Draw a transparent picture from the string <image>. With and height for
drawing are arguments

• pisk <size> <character>
Draw a picture from a icon bind to the key <character>. A square size is
given as argument.

• level <levelname> <width> <height> <Xoffset>
Draw one of the <image> in the ‚levelshots‘ directory. Also a frame is
drawn around the levelshot image.

• image <image> <width> <height> <Xoffset>
Draw the <image>.

• compass
Draw the compass. The size is 64 * 64 units.

• clock
Draw the clock. The size is 32 * 32 units.

• map
Draw the map. Size is about 148 * 148 units.

• client <Xpos> <Ypos> <ClientNr> <score> <ping> <time>
Draw a deathmatch client block.

• ctf <Xpos> <Ypos> <ClientNr> <score> <ping>
Draw a ctf client block.

• vip <xPos> <yPos> <Offset> <xGrid> <yGrid> <xDelta> <yDelta> <Isize>
Draw the player inventory. Draw a grid of items.

• vips <SlotNr> <Isize>
Draw one slot of the player inventory

• vic <xPos> <yPos> <Offset> <xGrid> <yGrid> <xDelta> <yDelta> <Isize>
Draw a chest (or other container) inventory. Draw a grid of items.

• vdip <image> <xPos> <yPos> <xxSize> <yySize> <xSrc> <ySrc> <xxSrc> <yySrc>
Draw part of an bigger image.

• vdipm <dir> <SlotNr> <image> <xPos> <yPos> <xxSize> <yySize> <xSrc> <ySrc>
<xxSrc> <yySrc>
Draw part of an bigger image.
Draw only percentage depending from meta data count.

• vdb <IconImage> <xPos> <yPos> <SquareSize> <Style> <MouseActionCmd>
Draw a button.

• vdt <IconImage> <xPos> <yPos> <SquareSize> <Style>
Draw an icon witch is used as icon trash can.

• vdip <xPos> <yPos> <xxSize> <yySize> <xSrc> <ySrc> <xxSrc> <yySrc>
Draw the player model. The model looks in the direction of the mouse
cursor.

• hotbar
Draw the hotbar.

Control

• if <value>
If <value> is not zero then do the statements until the corresponding
endif or else statement.
NOTE: If statements can be nested.

• else
This can follow after an if statement. If <value> of the if was zero, the
script commands after the else are executed.

• endif
End of an if block.

Others

• mbi <SquareSize> <Style> <IconImage> <MouseActionCmd>
Mouse button icon.
If mouse is active (cursor mode is on), draw <IconImage>.
On click with the mouse the <MouseActionCmd> is executed (a console script
command).
 <Style> Bit 0: if set, no select of icon
Example: mbi 22 0 i_recipe recipes

Display the recipe icon. On mouse click open the recipes dialog.
• ms <SelId> <X-Begin> <Y-Begin> <X-End> <Y-End>

Mouse selection area.
The x/y argments are relative to current X/Y position and define a
rectangular selection area.
<SelId> is the selction id for this selection area.
NOTE: Used intern for InGame dialogs.

• win <Window nr> <window style> <xsize in chars> <ysize in lines>
NOTE: Used intern for InGame dialogs.

5.3 HUD Script expressions

Each numeric argument can be an expression. There is no operator hierarchy.
Operaters are evaluated from left to right.

+ Add operator
- Subtract operator
* Multiply operator
/ Divide operator
& Bitwise AND operator
| Bitwise OR operator
ˆ XOR operator

== Equals operator
!= Not equals operator
> Bigger than operator
>= Bigger than or equal to operator
< Smaller than or equal to operator
<= Smaller than or equal to operator

&& Logical AND operator
|| Logical OR operator

The HUD language also understands hexadecimal numbers. As known form the C-
language, hexadecimal numbers starts with 0x. Example: 0x100 is the same as
256.

5.4 HUD script reference names

References starts with a % character and must be written UPPER CASE.

• %HEALTH_ICON
Image nr of the health icon (see the ‚pic <value>‘ statement).

• %HEALTH
Players health value.

• %AMMO_ICON
Image nr of the current ammo (see the ‚pic <value>‘ statement).

• %AMMO
Players ammo count.

• %ARMOR_ICON
Image nr of the current armor (see the ‚pic <value>‘ statement).

• %ARMOR
Players armor amount.

• %SEL_ICON
If > 0, image nr of current selected item (see the ‚pic <value>‘
statement).

• %PICKUP_ICON
If > 0, image nr of picked up item (see the ‚pic <value>‘ statement).
After an item pickup, this is reset to 0 after 3 seconds.

• %PICKUP_COLOR_NR
This is >= 0 for a picked up colored item. The value is one of the colore
values for colored items. If the item is not colored this variable has a
value of -1.

• %PICKUP_STRING
Item description of picked up item, see %PICKUP_ICON.

• %TIMER_ICON
If > 0, image nr of ican performing a timed action (like quad damage
powerup).

• %TIMER
Count down timer, seconds to go. See %TIMER_ICON.

• %HELPICON
If > 0, image nr of help icon. This is not used by Ya3dag.

• %SEL_ITEM
Item nr of current selected item.

• %LAYOUTS
Save layout hints for drawing. It is used for deathmatch or or other score
displays.

• %FRAGS
Players amout of frags.

• %FLASHES
Cleared each frame to zero. Flash numbers. 1 = health, 2 = armor.

• %CHASE
If > 0, a player nr. Used by spectators. Only valid if %SPECTATOR is > 0.

• %SPECTATOR
If > 0, this player is spectating. See %CHASE.

• %AIR
Remaining air in percent, 0 for no air, 1 no more air, 100 have all air.

• %SPEED

If > 0, the player drives a vehicle. This is an image nr of a speed
indicator.

• %ZOOM
If > 0, a zoom view is activated. This is an image nr of the zoom icon.

• %MONEY
Players amount of money.

• %MANA
Playera amount of mana.

• %SEL_WEAPON
If > 0, image nr of the selected or active weapon.

• %SEL_WEAP_DUR_PERC
Durability percent of selected weapon. If >= 0 draw durability bar.

• %SEL_ICONCOUNT
Count of current selected item, see %SEL_ITEM.

• %SHOW_COMPASS
If > 0, show the compass.

• %INVENT_CUR_WEIGHT
Current weight of items in inventory.

• %INVENT_MAX_WEIGHT
Max weight of items in inventory the player can carry.

• %SHOW_MAP
If > 0, show the map.

• %MOUSEGUI
If 0 the mouse look mode is active else the cursor mode is active. In
cursor mode you can operate InGame dialogs with the mouse.

• %VIDWIDTH
Current screen width in pixel.

• %VIDHEIGHT
Current screen height in pixel.

• %BLINK2
%BLINK3
%BLINK4
Toggle between 0 and 1 with different toggle rates. Us this for blinking
actions.

5.5 HUD script constant names

References starts with a # character and must be written UPPER CASE.

• #WIDTH
Width of virtual grid used for layout.

• #HEIGHT
Height of virtual grid used for layout.

5.6 Examples

Display the selected icon

if %SEL_ICON // Have an icon
yt 204 // indent from top
xr -34 // indent from right
pics 32 %SEL_ICON // draw selected icon
stat_num %SEL_ICONCOUNT // draw amount of items

endif

Display the compass in the lower right corner of the screen

if %SHOW_COMPASS // Player has the compass
yb -66 // indent y from bottom
xr -66 // indent x from the right
Compass // draw the compass

endif

Mouse buttons for cursor mode

if %MOUSEGUI // Mouse cursor mode is active
 yb -24 // indent from botton

xl 2 // indent from the left
 mbi 22 0 i_treasure inven // open inventory
 xi 24
 mbi 22 0 i_roll skills // open skill dialog
 xi 24
 mbi 22 0 i_pschein jobs // open jobs dialog
 xi 24
 mbi 22 0 i_recipe recipes // open recipes dialog
 xi 24
 if %SHOW_MAP // have level map
 mbi 22 0 i_ShowMap levelmap // show level map
 endif
 xi 24
 mbi 22 0 i_book "use book" // open books
 xi 24
 mbi 22 0 i_menu menu_main // open main menu
 xi 24
 mbi 22 0 i_mlook mouseguitog // switch to mouse look mode
endif

6. Others

6.1 Notice of a level in the travel agency TravelOverland

Put a file ‚TravelOverlandXXXXXXXX.txt‘ in the subdirectory maps, in addition to
the Level XXXXXXXX.qtr.

Following an example for the contents of this file:

;
; TravelOverlandWGFireland.txt
;
; Description of level for TravelOverland
;
;
; line 1: Name of level
; line 2: cost of a ticket
; line 3: minimum points player skills
; line 4: type of level: Single Multi
; line 5: short description of level
; line 6: Author
; line 7: spare, keep empty
; line 8: long description of level, lines until [EndOfFile]
;
;
;
WGFireland
600
Magic 30 nTreasures 5
Single
"&level_wgfireland_sname=Hadal"
R. Reinhard

;123456789012345678901234567890
"&level_wgfireland_lname="
"A trip with claims. This is"
"something for the experienced"
"adventurer. Please check your"
"equipment before you begin"
"this journey."
[EndOfFile]

Comments on entries:

• Lines starting with ; are comment lines.

• line 3: minimum points player skills

Here are skills of the player listed and the minimum values, which must
have these skills so that the level is offered by the travel agency. All
listed skills must have the named minimum number of points. If this line
is empty the level is always offered by the travel agency (if type of
level is Single). The skills are described in the manual
‚Ya3dag_Scripting_Language.PDF‘, chapter ‚PlayerSkills@...‘.

In addition, these names can be used:
nTreasures Number of treasures found until now
nVisitsMaze Number of visits to the labyrinth

• line 4: type of level

Single This level is offered by the travel agency
Multi This level is enumerated for multiplayer games

• line 5: short description of level

The text in this line may not be more than 22 characters. The optional
text &level_wgfireland_sname= is a multi-language reference. See on
another place for this.

• line 8: long description of level, lines until [EndOfFile]

Up to 6 lines of text. A single line can not be longer than 30 characters.
‚\n‘ can be used as line separator. The optional text
&level_wgfireland_lname= is a multi-language reference. See on another
place for this.

6.2 Time length of the day

The length of the day is 24 minutes for Ya3dag.

For testing the value of 24 can be changed as follows:

• Press the escape and shift key to pull down the Console window.
• Type ‚DayLengthInMinutes‘ to get the current value.
• Type ‚DayLengthInMinutes XX‘ to set a the new value.

6.3 Displaying a level-image while loading

Level-images are displayed during the load a level. The offers by travel agency
„TravelOverland“ also use these pictures.

• Put a jpg-image with the name of level in the subdirectory levelshots (for
example: WGCastle1.jpg).

• Give the image a size of 732 * 576. If necessary, use an image-processing
software for the task to resize the image.

• The F12 key stores a new screenshot in the subdirectory scrnshot. These
screenshots are a good starting point for your level-images.

• Prepare the screen for screenshots
◦ Press the escape and shift key to pull down the Console window.
◦ Type ‚hud‘ to toggle the Head-Up-Display or status-bar.
◦ Type ‚fps‘ to toggle the ‚frames per second‘ display.
◦ Type ‚noclip‘ to fly around in the level.
◦ Press the tilde key (~) or the (^) key to remove the Console window.
◦ Press the minus key on the number-block until you have the ego-view

mode.

6.4 Support of multiple languages

Multi language reference looks like „&tag=text“. Virtually anywhere that a text
is output, this reference can be used.
Tag is an identification used in language files. Text will be output if no such
an identification is found in any language file.
See the subdirectory languages for language files. The subdirectories you see
there are listed in the language selection of Ya3dag‘s Options/interface menu.
There is also a tool called Ya3dag_LanguageExtract.exe and
Ya3dag_LanguageInitial.bat to extract language references from files and to
build initial language files. See in the language subdirectory of a Ya3dag
source download.

6.5 Fonts

Ya3dag supports TTF and bitmap fonts. There can be a font for the console, the
menu and the game/hud.
Character codes used are according to ISO/IEC 8859-1 (or Latin1).

See http://en.wikipedia.org/wiki/Latin1 for more information.
The image above is from the German wikipedia.

TTF fonts

To speed up character display, Ya3dag renders TTF fonts in three sizes to a
bitmap.

Bitmap fonts monospaced

The characters are organized in a 16 x 16 grid (see the image above). Please
note that only the characters 0x20 to 0x7F and 0xA0 to 0xFF are used
(hexadecimal notation).
The bitmaps can be of type .png, .tif or .pcx.

Bitmap fonts proportional spaced

Ya3dag supports output from the BMFont tool. This program will allow you to
generate bitmap fonts from TrueType fonts. The application generates both image
files and character descriptions (.fnt files) that can be read by Ya3dag.
The benefit of this program is the generation of characters with an outline.

See http://www.angelcode.com/products/bmfont/ for more.

Graphic character fonts

The codes 0x00 to 0x1F and 0x80 to 0x9F are used for graphic characters like
checkbox or bars.
Only bitmaps are supported. Here the character are organized in a 8 x 8 grid.
The only exception is the font used for the editor. Here the graphic characters
are integrated into the font.

Pixelated fonts

You do not like blurred characters. If the name of a bitmap font ends in the
word Pixel, a nearest neighbor algorithm is used to get sharp characters.

6.6 Voxel setup files

There are some files inside a game data directory to setup voxel specific data.
God willing, the description at the beginning of the files is sufficient to
understand the content.
It is useful if you have some minecraft insider knowledge.

Voxel-Blocks.txt

Specify voxel blocks. Assigns textures, specify content, drawing
characteristics, ….

Voxel-Biomes.txt

• Specifies biomes for the random level generation.
• Types of ores and ore distributions.
• Trees and tree distributions.
• Decorations (grass, shrub, cacti, pumpkin, …).
• Mob models and frequency of appearance.

This section works together with the actor script command
 ListFill VoxMobSpawn
See the usage in the file xxx\ModYaVoxel\gamedata\LScriptGameBegin.txt.

• Loot definitions (chests)

