
Ya3dag
Scripting language

The source of intelligence

Based on V2.23 release of January 19, 2025

Edition history

 8.06.2004 RR: First edition.
10.06.2004 RR: DispEingebung
13.06.2004 RR: Actor-Variable PlayerSkills@...
 6.11.2004 RR: Actor-Variable PlayerJobs@...
 5.08.2008 RR: Start translation to English.
16.08.2008 RR: Done with translation to English.
19.08.2012 RR: Updated based on V1.40 release of August 19, 2012.
17.08.2014 RR: Added tabulators
03.03.2018 RR: Updated based on V2.00 release of March 4, 2018.
07.05.2018 RR: Updated based on V2.01 release of May 7, 2018.
20.07.2019 RR: Updated based on V2.10 release of July 21, 2019.
23.11.2019 RR: Updated based on V2.12 release of November 24, 2019.
31.10.2020 RR: Updated based on V2.14 release of November 1, 2020.
09.04.2021 RR: Updated based on V2.16 release of April 11, 2021.
01.12.2021 RR: Updated based on V2.17 release of December 1, 2021.
01.06.2022 RR: Updated based on V2.18 release of June 1, 2022.
27.11.2022 RR: Updated based on V2.19 release of November 27, 2022.
16.09.2023 RR: Updated based on V2.20 release of September 16, 2023.
 8.12.2023 RR: Updated based on V2.21 release of December 8, 2023.
14.07.2023 RR: Updated based on V2.22 release of July 15, 2024.
07.01.2025 RR: Updated based on V2.23 release of January 19, 2025.

Table of contents

• Introduction
• Types of scripts

◦ Actor scripts
◦ Level scripts
◦ Function scripts
◦ Player Scripts

• Elements of the script language.
◦ Comments
◦ Sections
◦ Script commands
◦ Arithmetic expressions

* Operators
* Operands
 - Numbers
 - Strings
 - Variables
 - Functions

• Predefined variables
• PlayerSkills
• PlayerJobs
• Text modifiers

◦ Character modifiers
◦ Tabulators

• Script Commands
◦ Overview script commands
◦ Assignment to variables
◦ If commands
◦ Loop commands
◦ Sleep command
◦ Detailed description of script commands

Introduction

At startup of a level, scripts are given to misc_actor (or other objects) as an
argument. They determine the reaction of such an object to events. Scripts make
an object smart.
Writing scripts is something for advanced people. You need knowledge of
programming languages. In addition, you need experience in dealing with Quake2
objects.
Do you know how a targetname is used? OK, read on in this documentation. If not,
look at the Lazarus documentation or learn more about this at an other place.

To get access to game scripts and documentation files from the project, unzip
the game data in Ya3dag\BaseQ2\Q2T_BaseQ2.pkz and Ya3dag\RRGame\Q2T_RRGame.pkz.
Rename the .pkz file extension to .zip and unzip it into Ya3dag\BaseQ2
respectively Ya3dag\RRGame.

Types of scripts

Scripts are located in the gamedata subdirectory. There are files with the
extension .txt. To work with these files, use the NotePad editor (or something
similar).

• Actor scripts
Use AScr suffix for this type of scripts (like
AScr_Ca1_GhostCastle.txt).
Used for misc_actor objects.

• Level scripts
Use LScr suffix for this type of scripts (like LScriptWGXmas.txt).
This type of script is executed at startup of a level from the
worldspawn object.

LScriptEveryLevel.txt is executed startup of each level and is intended
as base initialization of variables (such as player skills).
The only usable section is [Startup].

Thereafter the script file assigned to the name setting of the
worldspawn object (by the level editor) is executed.
Additional to the [Startup] section the ‚clock‘ and ‚timer‘ can be used.
Use this type of script to give some initial items to the player or to
assign and monitor level quests.

• Function scripts
Use FScr suffix for this type of scripts (like FScr_GBe_Hitlist.txt).
Used for func_script objects.

• Player Scripts
Use PScr suffix for this type of scripts (like PScr_XXX_Default.txt).
Used by player_script objects.

Elements of the script language

• Comments

Comments start with either the ";" Characters or with the characters "//".

• Sections

The name of a section is enclosed by square brackets and starts at begin
of a line. The code in a section is executed at occurrence of an
associated event. All script commands in this section are executed until
begin of the next section or the end of the file.
EventArg1 and EventArg2 are two parameters that are specified when a
section starts executing.

Section names and related events:

Section EventArg1 EventArg2 remark
[Startup] First execution of a script.
[ActorWayEnd] targetname End of a waypoint movement.
[ActorUsed] targetname classname For Actor scripts, Actor was used
 from entity „classname“.
[ActorUsed] targetname PlayerX For Level scripts, trigger name

'worldspawn' was triggered by player
X.

[ActorUsed] targetname PlayerX For Level scripts, trigger name
'worldspawn' was used by an actor
flagged as bot (with edict nr. X).

[ClockTick] Clock.
[DialogCancel] A dialog was closed.
[ActorPain] classname Object/Actor was injured.
[ActorDead] targetname classname Actor died.
[EnemyOn] Object has an enemy.

* AI_STAND_GROUND is removed
* AI2_SLEEPING is removed
* Execute script command „Weaponon

[EnemyOff] Enemy is gone.
* Execute script command „Weaponoff“

[PlayerTouch] PlayerX PlayerY The player has touched an Actor.
X is the number of the player (1 …).
In multiplayer games the level
script also gets „PlayerY“ if player
X touches player Y.

[PlayerUse] PlayerX The player in near an actor and
pressed the ‚use‘ key. X is the
number of the player (1 …).

[BotTouch] PlayerX "Player" An actor flagged as bot has touched
the player X.

[BotTouch] EdictX "Bot" An actor flagged as bot has touched
an other bot actor with edict nr. X.

[StealItem] Item The player has an item stolen from
an Actor. Item is the classname
(ammo_rockets, item_quad, …) of the
stolen object.

[TargetActor] targetname target A target_actor with name targetname
has been reached.

[xxx] target name Script command „trigger“ from an
other script.

[xxx] A target_actor with targetname xxx
has been reached.

[xxx] Answer of a dialog.

• Script commands

To a certain action. Only one script command per line.
There is a chapter on script commands at the end of this documentation.

• Jump targets

The goal of a `goto` script command.
Jump targets have a colon at the end and must be at the beginning of the
line.

• Arithmetic expressions

Whenever necessary, spaces separate part of one instruction from another
and allow the parser to recognize where an element is in an instruction,
such as int, ends and the next element begins (e.g. int age).

Operators

Operators Associativity Remark

- + ! ~ Right to left unary operators

* / % .. Left to right Multiplicative operators

+ - Left to right Additive operators

<< >> Left to right Shift operators

< <= > >= Left to right Relational operators

== != Left to right Relational operators

& Left to right Bitwise operator

^ Left to right Bitwise operator

| Left to right Bitwise operator

&& Left to right Logical operator

|| Left to right Logical operator, Lowest precedence

Operators are listed in descending order of precedence. If several
operators appear on the same line or in a group, they have equal
precedence.

.. Random operator, number between 1. and 2. operand.

If both operands are not numeric, it's assumed that the operands are text:

+ Concatenate text strings
== != < > <= >= Text comparison

Operands

Numbers

The usual „C“-style floating point and integer numbers are useable.
Hexadecimal (0x suffix), binary (0b suffix), and octal (0 suffix) notation
are supported for integers.

Examples:
60 // Decimal based integer number, has no leading zero
0x3c // Hexadecimal based integer number, has a leading 0x
0b00111100 // Binary based integer number, has a leading 0b
074 // Octal based integer number, has a leading 0
-10 // Negative integer number
0.75 // Floating point number
1.45E10 // Floating point number

Strings

Strings are enclosed in double quotes. If the next line is also a string,
this strings are concatenated (with an additional new line character
between).´
Use the character sequence \n for a new line (used for text output).
A $ character followed by the name of a variable is replaced by the value
of the variable.
Examples:

"Hello World" // single line string

"Hello" // double line string
"World" // with new line character between

"Hello\nWorld" // Same as above

"My Name is $This.Name." // Reference the name of an entity

Variables

A variable is a name given to a storage area that our script can
manipulate. Each variable has a specific type, which determines the size
and layout of the variable's memory.
The name of a variable can be composed of letters, digits, and the
underscore character (an identifier). It must begin with either a letter or
an underscore. A name can have a maximum length of 71 characters.
There is no difference between upper and lower case letters because the
script language is case insensitive.
The following types are known:

string holds a string with up to 511 Characters
int holds a 32 bit signed integer value
float holds a 64 bit floating point value

Variables are declared by a line beginning with the keyword int, float, or
string, followed by names separated by commas.
Optionally a const keyword can be added. In this case the variable can only
be read. An initial value can also be assigned, otherwise the variable has
a value of 0.

Examples:
int xxx // A single variable
int const xxx // A read only variable
int xxx = 1 // Assign a initial value
int a, b, c, d // Multiple variable declations
int a = 1, b=2, c, d=4 // All together

A single identifier used in a variable declaration results in a local
variable. They can only be used in the script in which they were declared.

Global variables are declared by linking two identifiers with a period.
They can be used from any script. In this manual, these types of variables
are sometimes referred to as "grouped variables".
Some predefined variables are also grouped together. These are described

later in a separate chapter.

Examples:
int Global.State // A single global variable
int const Global.State_Init = 0 // A read only variable
int const Global.State_Busy = 1
int const Global.State_Done = 2
Global.State = Global.State_Init // Assign a value
if Global.State == Global.State_Init // Test for a specific value

The first identifier of a global variable is also known as the group name.
The second identifier is then used for the members of the group.

The following group names are used for special purposes:
ThisLevel is a shortcut for this level.

This is unique for each specific level.
ThisScript is a shortcut for this script file.

All scripts with the same name that are used by
different entities can access it.

ThisLevelScript is a shortcut for all scripts with this name
in this level.

Functions

Functions have the format: Function-Name(Argument)

itemIsInGroup(ItemGroup ItemTest)
Test an item to be the member of a specific item group.

 ItemGroup: Classname of an item group.
 Classname of a single item.
 A list of the above contained in a single string separated
 by commas or spaces.
 ItemTest: Classname of an item. This is tested be a
 member of the item group.

 Examples:
 // Test player is holding a raw fish.
 itemIsInGroup("igr_fish_raw", Player.ItemSelected)

 // Test player holds one of some specific items in the hand.
 itemIsInGroup("item_carrot,item_potato,item_baked_potato,item_beetroot" Player.ItemSelected)

Return: 1 'ItemTest' is member of 'ItemGroup'
 0 'ItemTest' is NOT member of 'ItemGroup'

 -1 Error, 'ItemGroup' is no known item
 -2 Error, 'ItemGroup' is no grouping item
 -3 Error, 'ItemTest' is no known item

itemIsDye(Argument)
Argument is an item class name. Test argument to be a dye.

 Returns the dye code if there is a match else -1 is returned.

itemWoolByIdx(Argument)
Argument is a number in the range 0 .. 15, a dye code.
Returns the item name of an colored wool block.

lround(Value)
Round a float value to nearest integer and return this value.

MobsNearbyCount(MobType DistanceXY DistanceZ)
Count the mobs in the near of the calling entity.

 MobType: Can be 'Hostile', 'Passive', 'Ambient', 'Water' or 'All'.
 DistanceXY: Count mobs within this xy distance.
 DistanceZ: Count mobs within this z distance.

Returns the number of mobs in the near.

random()
Returns a floating point number in the range 0.0 .. 1.0.

RandomRangeInt(min max)
Both argument are integers.
Returns an integer in the range ´min´ .. ´max´.

StrHasSubString(Argument1 Argument2)
Test Argument1 to have the substring Argument2.
Returns 1 (true) or 0 (false) depending on the test result.

StrGetSubString(Argument1 Argument2)
Get from Argument1 a substring. Substring delimiter is the
character '|'.
Argument2 is the substring number to pick. The value 0 is the
first substring.
Return: The extracted substring.
 If index is out of range the return is an empty string.

StrLength(Argument1)
Return length of string.
Return: >= 0 Length of string

 < 0 Error, not string or other error

StrSubString(String, Position, Lenght)
Extracts a substring from a string.

String String to extract from
Position Startposition of the substring
Lenght Length of the substring (-1 = until the end)

 This argument is optional.

Return a string. On error an empty string is returned.

MDataGetItemClass(SlotNr)
This function is usable for scripts executed by a block function
(see block flag 'exec_script_on_use'). This block must have meta
data holding items (chests, campfire, item frame, ...).

SlotNr Zero based slot number

Return The item classname of the named item slot.
'none' is returned if the slot is empty.

MdataGetItemCount(SlotNr)
This function is usable for scripts executed by a block function
(see block flag 'exec_script_on_use'). This block must have meta
data holding items (chests, campfire, item frame, ...).

SlotNr Zero based slot number

Return The item count of the named item slot.

VoxWorldInfo(What)
Return infos about the voxel world.

What What information should be retrieved?
* MapGen
 Return Name of map generator for the loaded level.

VoxBlockGetInfo(Blockname, What)
Return infos about the voxel world.

Blockname GUI Name of a block
what What information should be retrieved?

* ItemName
 Return the item name of the block

Return depends from argument

Predefined variables

The following predefined variables are grouped together using some predefined
group names (see previously under global variable).
In the R/W column it is noted whether the variable can be Read and/or Written.

Group This

The variables in this group relate to the edict (actor, mob, entity, ...) to
which this script is bound.

There is also the possibility of indirect access to the variables of an edict.
If EventArg1, EventArg2 (section execution parameters) or the name of a local
variable is used as the group name, the variables of an object can be accessed
via their value. In this case the content of the variable must be the text
'Edict' or 'Player' followed by a number. In addition, the number must be in
the range from 1 to the maximum number of edicts in the game. Events like
'ActorUsed' or 'BotTouch' use such values for the section parameters.

Name Type R/W Description

Health int R/W Health of entity

MaxHealth int R Maximum value of health

Name string R Name of entity

OriginX float R Current X position of entity

OriginY float R Current Y position of entity

OriginZ float R Current Z position of entity

OnTheWay int R Entity is walking (moving) to a waypoint
Value 0 none, > 0 number of waypoints to go

EventArg1 string R Event argument 1

EventArg2 string R Event argument 2

StartupArg string R Startup argument given to script at start

ScriptName string R Name of the script file

ScriptLineNr int R Source line nr. (of this statement) in the script file

targetname string R Contents of the targetname field of this object

target string R Contents of the target field of this object

HaveFreezed int R Object (Actor) is freezed

HaveDucked int R Object (Actor) is ducked

HaveParalysed int R Object (Actor) is paralysed

HaveSleeping int R Object (Actor) is sleeping

HaveInvisible int R Object (Actor) is invisible

HaveInfected int R Object (Actor) is infected

HaveGoodGuy int R Object (Actor) is a good gay

HaveBadGuy int R Object (Actor) is a bad gay

HaveEnemy int R Object (Actor) has an enemy

HaveFollowPlayer int R Object (Actor) follows the player

HaveFollowAny int R Object (Actor) follows a player or an other actor

IsPlayer int R Object isplayer else Actor, Bot, ...

VoxLightSun int R Brightness of the sun at the location of the object (actor).
Range is 0 .. 255. 0 is no sun, 255 is maximum sunlight.
The value depends on the time of day and the shadow at the
location of the object.

Group Player

The variables in this group refer to the player (single player game) or to the
nearest player (multiplayer game).

Name Type R/W Description

Health int R/W Health of the player

MaxHealth int R Maximum health value of the player.

Name string R Name of the player

Mana int R Mana of the player

Money int R Money of the player

ItemSelected string R Classname of selected item (the player hold this item
in the hand)

Distance int R Distance to (nearest) player

LookToMe int R Does player look to me

InGame int R 1 if selected player is in the game, otherwise 0

Infected int R 1 if selected player is infected, otherwise 0

DialogOpen int R Dialog open: 0 = no, 1 = yes (this Actor),
-1 = yes (other Actor)

Group Game

The variables in this group refer to the player (single player game) or to the
nearest player (multiplayer game).

Name Type R/W Description

PlayerMax int R/W Maximum number of players (multiplayer games)

PlayerCurr int R Number of players in the game (multiplayer games)

BotCurr int R Number of Bot's in the game (multiplayer games)

FrameNum int R Frame number (counts 1 for each 1/10 seconds since start of
game)

MapName string R Filename of current loaded map (without file extension)

Time float R Elapsed time since the start of the game in seconds

NextMap string R/W Next map loaded on level change

HourAP float R Virtual hour within the day (0 .. 23) with after point digits

HourNr int R Virtual hour within the day (0 .. 23)

DayNr int R Virtual day, counted since start of the game (1 ..)

Skill int R Skill level, 0: easy, 1: normal, 2: hard, 3:hard+

HaveMultiplayer int R 1 if we are in a multiplayer game

LastResult int R Result of last executed script command

PlayerSkills

´PlayerSkills´, the skills of the player. These are some predefined global
variables.
Range of each variable is 0 .. 100.
The dialog skill shows all members of the variables in the group PlayerSkills
with their value.
PlayerSkills are usually preset in the level script 'LScriptEveryLevel.txt'.

Queries in the script as follows:

if PlayerSkills.Intuition > 30
 ...
 endif

Set new value as follows:

 PlayerSkills.Intuition = PlayerSkills.Intuition + 10 ; count up
 if PlayerSkills.Intuition > 100 ; over limit
 PlayerSkills.Intuition = 100 ; clip to limit
 endif

 or with the skill command

 skill "Magic" 7.0 ; increase magic

The following skills are defined (until now):

• Intelligence
The intelligence will be increased by solving puzzles and is also required
to solve puzzles.

• Perseverance
Perseverance is reduced during fighting, while running, while climbing or
swimming. It will also increased by doing this actions.

• Strength
Strength is increased by fighting and is needed for carrying goods and for
fighting.

All items have a weight (only magic and money have none). The amount of
things the player can carry depends from this skill.

Missing code: ==> use skill for hand fighting, sword or kick jumps.
Missing code: ==> If weight exceeds the maximum, slow speed.

• HitTheTarget
Accuracy in shooting.

• Negotiations
Negotiating skills (or communication skills) is needed when talking with
others to find out certain things and the purchase of goods of all kinds.
This skill is used in scripts only.

• Intuition
Important for decisive support in the game. Increase by solving secrets.
An object target_secret increases this skill by 1 (secret found).
An object target_secret can test against a minimum intuition value
(health) to show you a thought bubble.

• Magic
Skill in the use of magic. Is increased by the use of magic.
The order of dialogs with the teacher in the school of magic depends on

this skill. Will be used in scripts (sufficient magic ability).

• Curing
This ability is necessary for the restoration of vital energy for
themselves or others. Some remedies must only be taken.
For healing magic enough Mana is needed.

Missing code: ==> to use skill or increase skill.

• Protection
This skill reduces the effect of hits in battle. For protection there is
armor, shields and spells.

Missing code: ==> to use skill or increase skill.

• CombatSkill
Increases in the ghost level in the fight-arena.

• Jobs
Will be increased by 1 when a job is done.

In dialogs, the following classification is used:

Points Ability

0 - 20 Novice

40 - 60 Journeyman

20 - 40 Apprentice

60 - 80 Preferred companion

80 - 100 Representatives of the master

100 Masters

PlayerJobs

PlayerJobs stands for jobs/quests that are handed over to the player. The job
dialog displays the text of all members of the PlayerJobs variables.

Query the state of a job: :

JobState "JobName"
if Game.LastResult

...

JobState returns the value
0 "JobName" was not given to the player (the job is not pending).
1 "JobName" was given to the player, but is not yet done.
2 "JobName" is done (completed).

Give a job to the player:

JobState "JobName" "JobText"

"JobText" contains a description of the job and this text is displayed
in the job dialog. On line in the dialog can have up to 25 characters.
Note that the character sequence \n can e used as line separator here.

mark job as done.:

JobState "JobName" "Done"

Examples:

JobState "Fireworks" "Light the fireworks in\nthe garden."

JobState "Fireworks" "Light the fireworks in"
"the garden."

JobState "Fireworks" "Done"

Text modifiers

Text modifiers can upgrade the text inside message boxes, dialogs, books, rolls
or game/level intros (2D text). Also text placed with the misc_MapText entity
inside the level (3D text) can be modified. Text for the console can be color
modified only.

• Character modifiers

Modifier Modification 3D text

^1 Color red yes

^2 Color green yes

^3 Color yellow yes

^4 Color blue yes

^5 Color orange yes

^6 Color magenta yes

^7 Color white yes

^8 Color black yes

^9 Color dark red yes

^0 Color gray yes

^r Reset all modifications yes

^b Bold on/off (is implemented as color
inversion)

yes

^s Shadow on/off yes

^x Size of characters increased by one
character height

yes

^y Size of characters increased by half
character height

yes

^u Underline on/off no

^f Flashing on/off yes

^i Italic on/off no

Example: this is a ^1red^r ^uunderlined^r text.

The end of a text line also resets all modifications.

• Tabulators

With tabulators you can nice up dialogs, create simple lists or align header
and footer information.
Tabulators are usable for message boxes, dialogs, books, rolls or game/level
intros (2D text).

Tabulator stops are specified by a width in characters. Thereby a character
width equals 8 units in Ya3dags unified text coordinate system (base is a 640
* 480 screen size).
Preset are 10 tabulator stops with a width of 8 each. This preset is restored
at begin of each message box, dialog, book, roll or each ‚text‘ statement of a
game/level intro.
You can change these widths or align text left, right or centered on a tab
stop.

Tabulator stops are specified by writing

^T width1 width2 width3 ...

You can specify up to 10 widths. Add a r character to a with to get a right
align tabulator or a c character for a center align tabulator. A tabulator
specification ends with a ^ character, an end of line character \n or the end
of the text line. If no width is specified, the tabulators are reset to the
default.

To advance to the next tabulator stop write ^t.

Examples:

* From file Rolle_ExhibitionPhysics.txt

^T 27c^^r^5^u^xPhysics lab.

 Center all text on the roll.

* From file BookFirstHelp.txt

^T 14r
Level:^t ^2$Level
My name:^t ^2$Name
Difficulty:^t ^2$Skill

Right align the first column, the text after the tabulator stays left
aligned .

* From BookUsage1.txt

^T 14^^1W^r/^1Arrow up^r^tWalk forward
^1S^r/^1Arrow down^r^tWalk backward
^1A^r^tStep left

A list. The first column is left aligned and names keys, the second column
is the explanation.

Script Commands

Overview script commands

 Executed commands during script loading.
 This commands produce no code and can be placed
 outside any section (before the first section).
 const
 string
 int
 float

 Run time script commands
 actor_target
 teleport_actor_target
 DispIntuition
 DispGameState
 message
 dialogheader
 dialoganser
 dialogend
 dialogcancel
 stop
 go
 jump
 duck
 goodguy
 EnemyTest
 trigger
 FollowPlayer
 FollowLover
 FollowMe
 freeze
 sleeping
 invisible
 infected
 weaponsave
 weaponoff
 weaponon
 powerarmor
 itemgive
 itemtest
 itemdrop
 itemtake
 itemExchange
 itemUseOrSearch
 sound
 loopsound
 radio
 spawnflags_set
 wait
 lookat
 pose
 print
 centerprint
 killme
 scriptoff
 timer
 clock
 command
 debug
 waypoint

 JobState
 Effect
 CreateActor
 CreateEntity
 skill
 HitlistEnter
 HitlistMessage
 ListFill
 ListGet
 dmgteam
 PlayerSelect
 Player
 PhysicObjectsMoved
 sleep
 speaksetup
 speak
 InventoryGive
 InventoryRemove
 InventoryTest
 VoxBlockTrigger
 VoxBlockSet
 VoxBlockTest
 VoxBlockParam
 VoxBlockAction

Assignment to variables

Assignments to variables are done with the `=` character. The left side is the
name of a variable, the right side is an expression.
If the variable does not exist by the time the instruction is executed, it is
created as a variable of the type `string`.

Examples:
a = 0 // the job is not done
r = random() // random number
p = Game.Time + 1 // reset pause
n = (Game.HourNr >= 19) || (Game.HourNr <= 5) // night time
i = i + 1 // one more
t = "Hello World" // assign text
PlayerSkills.Intuition = (random() * 20) + 5 // assign to grouped variable

If commands

if <expression> Begin if command.
... Is executed if <expression> evaluates to true.

elseif <expression> Optional, use as often as you need.
... Is executed if all previous if/elseif
... have evaluated to false and this one to true.

else Optional, can only occur once.
... Is executed if all previous if/elseif
... have evaluated to false.

endif End if command.

Example:
R = random()
if r < 0.33

dialogheader "Attention!"
elseif r < 0.66

dialogheader "Stay away!"
else

dialogheader "Hi."
endif

Loop commands

Commands for loops are always used in pairs.

loop

loop
...

endloop

Endless loop.

do loop

do
...

until <expression>

If expression evaluates to true, the loop is terminated.
The commands in the loop are executed at least once.

while loop

while <expression>
...

endwhile

The loop will not enter or continue if <expression> is/gets false.
If <expression> is already false the first time, no commands within
the loop will be executed.

break

break can only be used within loops.
The (inner) loop will break.

continue

continue can only be used within loops.
The execution of commands continues on begin of the loop.
While loops also test <expression> again.

Example:

v = 0
do

v = v + 1

if (v == 3)
continue

endif

if (v > 5)
break

endif

print "do " v

until v > 7

Sleep command

sleep <expression>

<expression> is the time in seconds, where the execution of the script is
paused. When the time expires, execution continues after the sleep command.

During the sleep, other events are still processed. If there is a new sleep
command executed in event processing, script execution continues after this
sleep command.
If <expression> <= to 0 so, execution continues after the sleep command without
pausing. A previously active sleep command canceled now.

Detailed description of script commands

/**
 script command: <type> [const] <variable> [= <value>] { , <variable> [= <value>] }

 Define a global or local variable.

 <type> Variable type, can be 'int', 'float' or 'string'.
 * string holds a string with up to 511 Characters
 * int holds a 32 bit signed integer value
 * float holds a 64 bit floating point value

 const The optional const specifier can be placed before or
 after the variable type.
 If used, the variable cannot be written by an assign statement.

 <variable> The name of a variable can be composed of letters, digits,
 and the underscore character (an identifier).
 A name can have a maximum length of 71 characters.
 One identifier declares an local script variable.
 Two identifiers concatenated with a point declares a global
 variable (or a so called 'grouped variable').

 <value> is any text, can be an expression

 NOTE: * The value assigned is only done on first creation of a variable
 * Multiple variable definitions are separated by commas.

 on entry, *pText points to begin of the arguments

/**
 script command: actor_target [run] [AutoWaypoint] <Goal>

 run

 If run is present, the actor will run (not walk)

 AutoWaypoint

 If AutoWaypoint is present, the actor will use waypoints to reach
 the goal, if it is more than 512 units away.

 <Goal> can be

 PlayerX

 Actor walks to the named player.
 X must be in the range 1 .. game.maxclients

 EdictX

 Actor walks to the named edict.
 X must be in the range 1 .. globals.num_edicts - 1

 Infected

 Actor walks to the infected player or bot (if any)

 'targetname' of actor_target

 Actor walks to the named actor_target

 If this actor_target is not found, the Actor will stand.
 If there are multiple instances, one of them is picked.
 If the actor is standing on one of the name actor_target's,
 this one is skipped as possible goal.

 'targetname' of other entity

 Actor walks to the named entity

 NOTE: The last actor_target is saved intern.
 It is used by the 'go' command.

/**
 script command: teleport_actor_target <'targetname' of actor_target>

 Actors origin is changed to the origin of the named actor_target

 If this actor_target is not found, the Actor will stand.
 If there are multiple instances, one of them is picked.

 NOTE: The last actor_target is saved intern.
 It is used by the 'go' command.

/**
 script command: DispIntuition <Text> [TimeToStay]

 Displays this message on the Overlay.

 <Text> Text to output. If first character is ^, it's a reference
 to an dialog text file.

 [TimeToStay] is the text, the message will stay (in seconds) on the
 overlay, if missing, it defaults to 5 seconds.

 NOTE: Max 7 lines fit in the display.
 The text lines are centered.
 Maximum length 1st Line: 20 characters
 Maximum length 2nd Line: 24 characters
 Maximum length 3rd Line: 26 characters
 Maximum length 4th Line: 26 characters
 Maximum length 5th Line: 26 characters
 Maximum length 6th Line: 24 characters
 Maximum length 7th Line: 20 characters

/**
 script command: DispGameState <Text> [TimeToStay] [nChars] [nLines] [BackGroundPicture]

 Displays the game status on the Overlay.

 <Text> Text to output.

 [nChars] is the number of characters which fits in the
 overlay, if missing, it defaults to 30 characters.

 [nLines] is the number of lines which fits in the
 overlay, if missing, it defaults to 30 lines.

 [TimeToStay] is the text, the message will stay (in seconds) on the
 overlay, if missing, it defaults to 5 seconds.

 [BackGroundPicture] name of picture used as background.
 overlay, if missing, it defaults to 'Dlg/Dback'.

 NOTE: Game status is displayed for all players in the game.

/**
 script command: message <Messagetext> [TimeToStay] [Range] [MessageEndEvent]

 Displays this message on the Overlay.

 <Messagetext> Text to output. If first character is ^, it's a reference
 to an dialog text file.

 [TimeToStay] is the time, the message will stay (in seconds) on the
 overlay, if missing, it defaults to 5 seconds.

 [Range] If the distance to the player is more than Range,
 the message is not outputted. Range defaults to near.
 use
 melee (nearer than 80)

 near (nearer than 500 and visible)
 mid (nearer than 1000 and visible)
 far (any distance and visible)
 always (message is outputted independent of distance and visibility)
 all (like always, in multiplayer games is outputted to all
 players. 'MessageEndEvent' is not used here)

 [MessageEndEvent] optional. If message is removed from screen, this section
 is executed in the command script.

 NOTE: If the message is outputted 'Game.LastResult' has the value of 1
 If the player is to far or was not visible 'Game.LastResult' has the value of 0
 If the message is not outputted, because any other message or dialog
 is on the screen in the moment, 'Game.LastResult' has the value of -1

/**
 script command: dialogheader <Messagetext>

 <Messagetext> Text to output. If first character is ^, it's a reference
 to a dialog text file.

 Begin of an Dialog. The actor says the <Messagetext>.

/**
 script command: dialoganser <Sectionname> <Messagetext>

 One of the possible answers of the player.
 If this answer is selected, the section <Sectionname> is executed.

 <Messagetext> Text to output. If first character is ^, it's a reference
 to an dialog text file.

/**
 script command: dialogend [Cursor] [NoBackground] [TimeToStay] [Range]

 End of an dialog definition.

 [Cursor] This is optional. Write the text 'Cursor' to force
 a mouse cursor if this dialog is open.
 --> Use this for dialogs whits need the mouse to
 work reasonable.

 [NoBackground] This is optional. Write the text 'NoBackground' to
 have no background image for the dialog.
 --> Use to give the dialogs a specific layout.
 NOTE: Drawing the dialog the setting 'Dialog_Img_Frame'
 and 'Dialog_Img_Back' from the file
 'GameConfiguration.txt' is not used.

 [TimeToStay] is the time, the dialog will stay (in seconds) on the
 overlay, if missing, it defaults to 20 seconds.

 [Range] If the distance to the player is more than Range,
 the dialog is not outputted. Range defaults to near.
 use
 melee (nearer than 80)
 near (nearer than 500 and visible)
 mid (nearer than 1000 and visible)
 far (any distance and visible)
 always (message is outputted independent of distance and visibility)

 NOTE: If the dialog is outputted 'Game.LastResult' has the value of 1
 If the player is to far or was not visible 'Game.LastResult' has the value of 0
 If the dialog is not outputted, because any other message or dialog
 is on the screen in the moment, 'Game.LastResult' has the value of -1

/**
 script command: dialogcancel

 Cancels any open Dialog and message

 NOTE: The section [DialogCancel] is not executed!

/**
 script command: stop [alternate stand pose]

 The Actor will stand.

 * alternate stand pose
 This is an alternate pose to the default stand pose.
 NOTE: The model animations must support this pose.
 Known values are:
 * none not alternate stand pose (is the default pose)
 * stand standing, q3 models can turn their heads
 * sit sitting, q3 models can turn their heads

/**
 script command: go

 If there was an saved target_actor goal, the Actor will continue
 to walk to this goal.

/**
 script command: jump [speed] [height]

 Actor jumps in direction of ideal yaw (It's current viewing direction)

 [speed] optional jump speed, defaults to 200
 [height] optional jump height, defaults to 200

/**
 script command: duck on|off

 Actor duck on/off

/**
 script command: goodguy on|off|AngryAtPlayer

 Actor goodguy management.
 on: If no good guy, make mob a good guy
 and remove an enemy if this is a player.
 off: Make mob a bad guy.
 AngryAtPlayer: Make mob a bad guy set nearest player as enemy.

/**
 script command: EnemyTest
 EnemyTest EvadeModel { xxx}
 EnemyTest HuntModel { xxx}

 Test for enemy or evade from monsters/actors.

 * No arguments
 If the actor has no enemy, test for one in the near.
 * EvadeModel { xxx}
 Evade from monsters/actors having a specific model.
 'xxx' is a file path to a model string.
 There can be multiple model strings.
 Example: EnemyTest EvadeModel "players/cat/" "players/wolf/"
 Evade from cat and wolf models.
 * HuntModel { xxx}
 NOTE: If the actor already has an enemy, this action is skipped.
 If the actorHunt monsters/actors having a specific model.
 'xxx' is a file path to a model string.
 There can be multiple model strings.
 Example: EnemyTest HuntModel "players/cat/" "players/wolf/"
 Hunt cat and wolf models.

 Can also be used from bad gays walking around. The
 waypoint move code disables looking for enemies if
 the actor is on the way.

 NOTE: 'Game.LastResult':
 -1: Actor is freezed or paralyzed, actor has no enemy.
 0: Actor has no enemy

 1: Actor has an enemy
 2: Set evade from an enemy or hunt of an enemy

/**
 script command: trigger <targetname> [SectionName] [EventArg1] [EventArg1]

 triggers all enties with <targetname>.

 [SectionName] if the triggered entity is a misc_actor, it's section
 SectionName is executed, if SectionName is not give,
 the section [ActorUsed] is ececuted.

 [EventArg1] Optional argument if event is send to actor with script.

 [EventArg2] Optional argument if event is send to actor with script.

/**
 script command: FollowPlayer on|off [RangeStand [RangeRun]]

 If on, the Actor will follow the player and will help him
 to fight his enemies.
 If off, this feature is turned off.
 RangeStand: If actor is is closer than this, it stops.
 Optional, default is 128.
 RangeRun: If actor is further away he start to run to the player.
 Optional, default is 256.

/**
 script command:

 FollowLover Check [RangeSearch] [RangeStand] [RangeRun]

 Check for lover.
 Try to find a lover. If there is on in the near
 move to this entity.

 RangeSearch: Distance threshold, check for lovers near me.
 Optional, default is 256.

 RangeStand: If actor is is closer than this, it stops.
 Optional depends from the entity size.
 RangeRun: If actor is further away he start to run to the player.
 Optional, default is 256.

 'Game.LastResult':
 <= 0 Have no lover
 0 I am in love mode but there is no other
 entity in the near which is in love too.
 -1 I am not in love
 -2 Follow anyone, but not this is no lover
 1 Very near to my lover.
 Entity is standing and looking to lover.
 > 1 Have a lover, value is distance to lover.

 FollowLover SpawnBaby

 Spawn a baby mob.
 ON spawn of a baby the section [BabySpawned] of both parents is executed.
 Use this event to reset the love mode of the parents.

 'Game.LastResult':
 <= 0 Have no lover
 0 Was not able to create a baby
 1 A baby mob was created
 -1 I am not in love
 -2 Follow anyone, but not this is no lover
 -3 Have no lover
 -4 Lover is to far away

/**
 script command:

 followme regroup <'targetname' of misc_actor> [<order>] [<DistArg1>] [<DistArg2>]

 From now on, the named Actors will follow this actor.

 followme stop

 follow me will stop, the other actors are freed

 followme pose <pose string>

 pose string for the followMe's, see pose command
 NOTE: The others must have an actorscript to do the poses

 followme look atme
 follow me will look at the misc_actor executing this command

 followme look fromme
 follow me will look away from the misc_actor executing this command

 followme look asi
 follow me will look in the same direction as the misc_actor executing
 this command

 The follower look in the give direction.
 The ideal_yaw is set.

 <order> InLine In Line behind the leader (default)
 DoubleLine 2 Lines behind the leader
 Parallel Parallel behind the leader
 Circle in a Circle behind/around the leader
 Keil Keil behind the leader

/**
 script command: variable <variable> [= <value>]

 define ActorVariables

 <variable> is one of the ActorVariables
 <value> is any text, can be an expression

 NOTE: * The value assigned is only done on first creation of a variable
 * with value assigns, no other variable definition may follow.
 * without value defininitin, there may be more variables in a line.
 In this case, the variable is preseted with an empty string.

/**
 script command: freeze on|off

 freeze on or off.

 NOTE: A frozen actor stands still like a stone statue.

/**
 script command: sleeping on|off|NoSnore

 Sleeping on or off:
 on: Sleeping on with snoring
 NoSnore: Sleeping on without snoring
 off: Sleeping off

 NOTE: a sleeping actor makes snore sounds

/**
 script command: invisible on|off

 invisible on or off.

 NOTE: A invisible actor is not seen.

/**
 script command: infected on|off|clearall|count

 Infected on, off, clearall or count.

 NOTE: on, off: Actor shows infected effect on/off
 clearall: all infected players/bots infection off
 count: 'Game.LastResult' holts the number of infected

/**
 script command: weaponsave

 save the weapon of the actor

/**
 script command: weaponoff

 no weapon for this actor, the model removes it's weapon

/**
 script command: weaponon

 restore weapon of this actor (from weaponsave)

/**
 script command: powerarmor <type> <amount>

 powerarmor for the actor

 <type> is SHIELD or SCREEN, others switch off any powerarmor
 <amount> how long armor holds

/**
 script command: itemgive <name of item> <amount>

 give item to player

 <name of item> is the classname of an item (ammo_rockets, item_quad, ...)

 <amount> if <amount> is given in the argument list, the number
 of items is given to the player.

/**
 script command: itemtest <name of item>

 test item of player

 <name of item> is the classname of an item (ammo_rockets, item_quad, ...)
 Money get players money (is no item)
 Mana get players money (is no item)

 NOTE: the amount can be picked up with 'Game.LastResult'
 'Game.LastResult' has the value of -1 if item is not existing

/**
 script command: itemdrop <item> [<amount/change>] { <item> [<amount/change>] }

 Actor drops items

 <item> Is the classname of an item (ammo_rockets, item_quad, ...)
 Use the string 'MyWeapon' to drop the weapons of the actor
 (if it has any).
 <amount/change> Is a value (or expression).
 If >= 1.0 this number of items are dropped
 If > 0.0 and < 1.0 this is the change to drop one
 item (0.0 drops no item, 1.0 for sure drops an item).

 The argument list can have multiple item <item>/<amount/change> pairs.
 The last <amount/change> is optional (it defaults to 1.0).

 Dropped items are removed from the game after 29 seconds.

 Examples: itemdrop item_quad
 itemdrop item_quad 3
 itemdrop ammo_rockets 1 ammo_rockets 0.6 item_quad 0.3

 NOTE: 'Game.LastResult' has the value of -1 if item is not existing
 'Game.LastResult' or a value of >= 1 for the number of items dropped

/**
 script command: itemtake <name of item> <amount>

 If Player have <name of item>, reduce it by <amount>

 <name of item> is the classname of an item (ammo_rockets, item_quad, ...)
 Money take players money (is no item)
 Mana take players money (is no item)

 NOTE: 'Game.LastResult' has the value of -1 if item is not existing
 else 'Game.LastResult' holts the item count after reduction.
 The new amount of the item is clipped to 0.

/**
 script command: itemExchange

 Test Player to have the startup items named in the second till last
 startup items. If the player has all this in it's inventory, remove
 them all and give the player the first startup item.

 NOTE: 'Game.LastResult' has the value of 1 if the exchange was done
 else 'Game.LastResult' is 0.

/**
 script command: itemUseOrSearch <range> <items>

 Search for items being in the range and being visible from the
 actor.

 If the actor touches the item, the item is picked up and
 used.

 If the actor don't touches the item, it returns it's edict number
 (which could be use for a actor_target command).

 <range> items must be inside this distance from the player.

 <items> * A list of specific items like
 weapon_railgun ammo_slugs item_health
 * The text 'StartupItems'
 In this case all entries from the startup items are
 searched too.
 * ItemsWeapon, ItemsAmmo, ItemsArmor, ItemsKey, ItemsPowerup,
 ItemsSomething, ItemsHealth, ItemsAll
 Any of this search for items of this type.

 Health items are only searched, if the actor has not it's max health.

 return in 'Game.LastResult'

 0 Nothing to do
 > 0 EdictNr, Actor must move to this item.

/**
 script command: sound <name of sound> [<targetname>] [<attenuation>]

 The actor plays the named sound.

 Examples: sound "player/gasp1.wav"
 sound "items/pkup.wav" 3.0
 sound "gladiator/gldidle1.wav" 1.0

 <targetname> optional entity which plays the sound
 if not given, the caller plays the sound.
 Use 'player' if the nearest player should play the sound.
 Use the character - if you have an attenuation but don't
 want to use the targetname feature.

 <attenuation> range 0.0 to 4.0, default is ATTN_IDLE
 0.0 ATTN_NONE full volume the entire level
 1.0 ATTN_NORM
 2.0 ATTN_IDLE
 3.0 ATTN_STATIC diminish very rapidly with distance

/**
 script command: loopsound <name of sound> [<attenuation>]

 The actor plays the named sound in a loop.

 Examples: loopsound "ambient/Kneipe1.wav"

 Is <name of sound> Off, than any looped sound is switched off

 <attenuation> range 0.0 to 4.0, default is ATTN_IDLE
 0.0 ATTN_NONE full volume the entire level
 1.0 ATTN_NORM
 2.0 ATTN_IDLE
 3.0 ATTN_STATIC diminish very rapidly with distance

/**
 script command: radio <name of sound>

 The given sound is heres in the complete level by all clients

 Examples: radio "player/gasp1.wav"
 radio "items/pkup.wav"
 radio "gladiator/gldidle1.wav"

/**
 script command: spawnflags_set <targetname> <expression>

 Set Bits in spawnflags of entity with <targetname>.

/**
 script command: wait <seconds to wait>

 The actor waits the time (in seconds).
 The actor goes to the stand pose. The actors pausetime is set to
 the given value.

 NOTE: wait must be after 'go' or 'target_actor', because these commands
 reset any wait time.

/**
 script command: lookat <target>

 The actor sets it's direction towards the target.

 player look in direction of player
 target any existing target
 0 .. 360 at this direction

 NOTE: the direction of the actor is reset after an 'go' or
 'target_actor'.
 Best usage is after an 'stop' command.

/**
 script command: pose <pose string>

 If the actor is standing, it will makes the poses given as Argument.
 The characters in the argument are the poses the actor will make.

 F flipoff
 S salute
 T taunt
 W wave
 P point
 J jump
 ' ' stand (the character blank!)
 | this character sets an repeat, if the pose string ends,

 the poses continue after this character.

 NOTE:
 * Every new go, stop or target_actor will reset the poses.
 It's for use after a stop
 * Enclose the argument in quotes, if the stand pose is used (the blank).

/**
 script command: print arguments

 prints out the arguments on the console

/**
 script command: centerprint arguments

 prints out the arguments to the center of the screen.

/**
 script command: killme

 remove this actor from the game

/**
 script command: scriptoff

 removes the script from the calling actor.

/**
 script command: timer <seconds until timer fired> [SectionName] [Argument1] [Argument2]

 Fire execution of section SectionName, This is a one-shot timer.
 If SectionName is not given, the SectionName 'Timer' is used

 NOTE: if <seconds until timer fired> is < 0, the timer is switched off

/**
 script command: clock <seconds clock delta>

 Fire execution of section "ClockTick" in deltas of <seconds clock delta>.

 NOTE: if <seconds clock delta> <= 0, the clock is switched off

/**
 script command: command "command to system"

 executes one of the 'console commands'.

 Example: command "menu_loadgame"

/**
 script command: debug on|off|DumpLocVars

 on Switches debug prints on
 off Switches debug prints off
 DumpLocVars Dump the actor script local variables

 'Game.LastResult': < 0: unknown argument
 0: debug prints are off
 1: debug prints are on

/**
 script command: waypoint [run] targetname

 waypoint managment

 waypoint Off
 remove all waypoints

 waypoint [run] targetname1 targetname2 targetname3 ...
 Move to one of the waypoints (up to 32) (1 is randomly chosen).
 If run is present, the actor will run (not walk).

If targetname is the string actor moves to Waypoint
 "MyHome" shortest distance to start position of actor
 "StartupPositon256" near start position of actor with max distance 256
 "StartupPositon512" near start position of actor with max distance 512
 "StartupPositon1024" near start position of actor with max distance 1024
 "StartupPositon2048" near start position of actor with max distance 2048
 "CurrentPositon256" near current position of actor with max distance 256
 "CurrentPositon512" near current position of actor with max distance 512
 "CurrentPositon1024" near current position of actor with max distance 1024
 "CurrentPositon2048" near current position of actor with max distance 2048
 "RandomPositionXXX" A Position somewhere in around the current position.
 Max. distance will be XXX.
 "EvadePlayerXXX" A Position somewhere around the current position.
 Do not get closer than XXX to the next player.
 This works without waypoints. XXX must be greater zero.

/**
 script command: JobState <name of job> [<job text>]

 test / change job state

 <name of job> is the name of the job

 <job text> is displayed in the job screen
 if <job text> is "Done", the job will not
 be displayed and marked as done.

 NOTE: 'Game.LastResult' has the value of
 0 job is not existing
 1 job is existing and not done
 2 job is done

/**
 script command: Effect <name of effect>

 Make effect at actors location.

 <name of effect> is the name of the effect:
 StarsRed Red stars
 StarsGreen Green stars
 StarsBlue Blue start
 StarsYellow Yellow stars
 StarsMagenta Magenta stars
 StarsWhite White stars
 Hearts Emits some Hearts
 SmokeGray Emits some gray smoke particles
 SmokeBlack Emits some black smoke particles
 Login Login effect
 Logout Logout effect
 Explosion1 <Damage> [<Radius>] The actor explodes (type 1 explosion)
 The actor is not hurt
 <Damage> 0 .. 999, damage to the neighborhood
 <Radius> 32 .. 512, optional explosion radius. Default is <Damage> + 40.
 Explosion2 <Damage> [<Radius>] The actor explodes (type 2 explosion)
 The actor is not hurt
 <Damage> 0 .. 999, damage to the neighborhood
 <Radius> 32 .. 512, optional explosion radius. Default is <Damage> + 40.
 ShowOff show symbol above actor off
 ShowExclamation show exclamation mark above actor
 ShowQuestion show question mark above actor
 ShowCoins show coins above actor
 ShowHeart show hear above actor
 Light <Range> <Red> <Green> <Blue> Light Around Actor
 <Range> 0 .. 3, use 0 to switch off the light
 <Red> 0 .. 3
 <Green> 0 .. 3
 <Blue> 0 .. 3
 ShellOn Actor has a shell, note that the light
 settings are used for the shell color
 ShellOff Actor shell off
 Rf2EffectOff Render function 2 effect off
 Rf2EffectFlames Render function 2 effect, actor burns

 RfsFlagBits <value> Render shader flag bits (4 bit)
 Set the shader special effect 'flag bits' of
 this entity. An image shader can test this
 value.
 RfsColorIdx <value> Render shader color index (4 bit)
 Set the shader special effect 'color index' of
 this entity. An image shader can test this
 value.

 SizeFactor <value> Set size factor of entity.
 Range is 0.1 .. 10.0.
 1.0 is default size.
 0.5 is half size.
 2.0 is double size.

/**
 script command: CreateActor [Bot] <where> <Model> <Name> <spawnflags> <weapon>
 <health> <ActorScript> <targetname> <target>

 create actor

 [Bot] Bot is optional and is used for creating bots.
 [MobAmbient] MobAmbient is optional and is used to flag an ambient mob.
 [MobPassive] MobPassive is optional and is used to flag a passive mob.

 <where> "MyLocation" for loaction of the script owner
 DeathmatchSpawnPoint
 name of waypoint

 <spawnflags> can be ored together
 1 "Ambush (Monster)"
 2 "Trigger Spawn (Monster)"
 4 "Sight (Monster)"
 8 "Good Guy"
 16 "No Gib"
 32 "Use Homing Rockets"
 64 "Be Monster"
 128 "Ignore Fire"
 4096 "No Visual Weapon"
 8192 "Follow Player"

 <weapon> can be one of this
 0 no Weapon
 1 close-range attack (no Weapon)
 2 close-range attack (with STD Weapon)
 3 Blaster
 4 Shotgun
 5 Supershotgun
 6 Machinegun
 7 Chaingun
 8 GrenadeLauncher
 9 Rockets
 10 Hyperblaster
 11 Railgun
 12 BFG
 13 Throws flames
 14 Throws green poison
 15 Lightning blue
 16 Fireball
 17 Lightning red
 18 Snowball
 19 Crossbow
 20 Crossbow with fire arrows
 21 Sphere levitation
 30 Lightsaber blue
 31 Lightsaber green
 32 Lightsaber red
 33 Combat knife
 34 Assassin dagger
 35 Rusty sword

 36 Lohengrins sword
 37 Katana
 38 Ancestral sword
 39 Simple sword (Lego style)

/**
 script command: CreateEntity <where> <Classname> <spawnflags> <health>

 Spawn an entity by its classname.

 <where> "MyLocation" for location of the script owner
 name of waypoint

 <Classname> Classname of the entity we want to spawn.

 <spawnflags> Depends from the spawned entity.
 A numeric value.

 <health> Health value for the spawned entity.
 A numeric value.
 Typically 0 will set a default health value.

/**
 script command: skill <name of skill> [<amount to add>]

 test / change job state

 <name of skill> is the name of the skill

 <amount to add> value to add to skill

 Example: skill "Magic" 15.0 ; add skill

 NOTE: 'Game.LastResult' has the value of skill after add (0 .. 100)
 or -1 if skill not known

/**
 script command: HitlistEnter <name of Hitlist> ascend|descend <name of player> <value>

 test / change job state

 <name of Hitlist> is the name of the hitlist

 ascend|descend sorting of hitlist
 ascend: sorted by maximum value (like most points)
 descend: sorted by minimum value (like best time)
 NOTE: must match HitlistMessage for same hitlist

 <name of player> is the name of the player

 <value> is the value to enter in the histlist for this player

 NOTE: 'Game.LastResult' has the value of
 0 done
 1 entry is on top of the list

/**
 script command: HitlistMessage <name of Hitlist> ascend|descend <format>
 <Messagetext> [TimeToStay] [Range] [MessageEndEvent]

 Displays this message on the Overlay.

 <name of Hitlist> is the name of the hitlist

 ascend|descend give one of this for sorting direction of hitlist
 NOTE: must match HitlistEnter for same hitlist

 <Messagetext> This text is displayed as header.

 <format> Formatting for numbers
 time mm:ss minutes and seconds

 - no formatting

 [TimeToStay] is the time, the message will stay (in seconds) on the
 overlay, if missing, it defaults to 5 seconds.

 [Range] If the distance to the player is more than Range,
 the message is not outputted. Range defaults to near.
 use
 melee (nearer than 80)
 near (nearer than 500 and visible)
 mid (nearer than 1000 and visible)
 far (any distance and visible)
 always (message is outputted independent of distance and visibility)

 [MessageEndEvent] optional. If message is removed from screen, this section
 is executed in the command script.

 NOTE: If the message is outputted 'Game.LastResult' has the value of 1
 If the player is to far or was not visible 'Game.LastResult' has the value of 0
 If the message is not outputted, because any other message or dialog
 is on the screen in the moment, 'Game.LastResult' has the value of -1

/**
 script command: ListFill <what to fill>

 fill list with information

 <what to fill>:
 Reset Resets the list
 Add Add a line to the list
 AddItem NameOfItem Add a line to the list with info about an item
 GUI name|GUI description|Price|Classname|
 Icon name|Quantity
 AddRecipe1 RecipeType NameOfItem Add a line to the list with info about
 a simple recipe. The recipe must match the recipe type,
 must have one input of the named item and one output.
 RecipeType: Type of recipe (crafting, cooking, ...)
 NameOfItem: Class name of an item
 Class name of output item
 AddMyInventory For each item slot in the inventory of this actor
 add a line to the list with info about the item
 GUI name|GUI description|Price|Classname|
 Icon name|Count
 AddPlayerInventory For each item slot of the players inventory
 add a line to the list with info about the item
 GUI name|GUI description|Price|Classname|
 Icon name|Count
 TravelOverland Info of reachable levels (Single Player Levels)
 Name of Level|Price for ticket|
 Can reach level|Leveltype|
 Short level description|Author|spare|
 level description
 PlayersAndBots Info of players and bots in the game
 Name|IsPlayer|EdictNr|Health|Infected

 NOTE: * 'Game.LastResult' has number of entries in the list
 < 0 has some error
 * before adding entries, the list has to be reseted
 * There is only one list in the game wich can be used.
 So ensure it't build up from new if used in a dialog.
 * NameOfItem is the classname of an item (like 'item_bottle1').

/**
 script command: ListGet <variable> <index> <column>

 get listentry from last ListGet

 <variable> Name of local variable, result is placed here.
 <index> number of list entry, 0 ..
 <column> the .. column, 0 ..

 NOTE: 0 OK

 < 0 has some error

/**
 script command: dmgteam teamname

 Sets up a dmgteam.
 Actors with the same dmgteam will help each other in case of trouble.
 NOTE: use only at startup of actor.

/**
 script command: PlayerSelect Selection

 Selects a player for player related variables/assigns/actions.

 Selection: off Auto selection, selects the nearest player (the default).
 PlayerX X is the Player Nr. (1 .. Game.PlayerMax) to select.

 NOTE: * only reasonable for multiplyer games.
 * PlayerX is given as argument to PlayerTouch events.

/**
 script command: Player xxxxx

 Player related commands

 Infected on Infection for this player on,
 'Game.LastResult' has # infected players
 Infected off Infection for this player off
 'Game.LastResult' has # infected players
 Infected clearall Infection for all players off,
 'Game.LastResult' has # infected players
 Infected count 'Game.LastResult' has # infected players
 Invisible on Make this player invisible, 'Game.LastResult' is true if player is
 invisible
 Invisible off Make this player visible, 'Game.LastResult' is true if player is
 invisible
 Invisible test Test this player for being invisible,
 'Game.LastResult' is true if player
 is invisible
 Sleep hours Sleep 'hours'.
 Player makes a snore sound and the game time is incremented
 by 'hours'.
 'hours' has a range from 0.0 to 24.0.
 FadeScreen R G B alpha fadein fadeout holdtime Fades the screen to a color.
 R G B color components of fade color, 0-1
 alpha opacity of fade. 0=no effect, 1=solid color
 fadein time in seconds from trigger until full alpha
 fadeout time in seconds after fadein+holdtime from full alpha
 to clear screen
 holdtime time to hold the effect at full alpha value.
 -1 = permanent
 InvCraft Update RecipeType GridSize Update the inventory crafting output
 RecipeType Type of recipe (crafting, cooking, ...)
 GridSize Side length of the crafting grid.
 InvCraft Get RecipeType GridSize Amount Get crafting output
 RecipeType Type of recipe (crafting, cooking, ...)
 GridSize Side length of the crafting grid.
 Possible values are 1, 2 or 3.
 Amount Get this number of items
 InvSelItemDamage Points Subtract damage points from players selected
 weapon/tool.
 InvSelItemRemove Amount Remove 'amount' items from players selected item.
 MData Update RecipeType Update meta data recipe output
 RecipeType Type of recipe (crafting, cooking, ...)
 MData SelExchange SlotNr Exchange the selected item with the slot in
 a block with meta data items (chests, item frames, ...)
 SlotNr Zero base slot number.
 MData SetSlot SlotNr ItemNr Count Explicit set a meta data item slot in
 a block with meta data items (chests, item frames, ...)
 SlotNr Zero base slot number.
 NOTE: * multi player game
 Works with selected player or nearest (if none is selected).

 Also see 'PlayerSelect' script command.
 * single player game
 Works with the one and only player.

/**
 script command: PhysicObjectsMoved <targetname> [DistMoved DistPitch DistYaw DistRoll]

 <targetname> must be the targetname of a physic_trigger_reset entity.
 Count all physic objects which have moved away from there start
 position.

 DistMoved Object moved minimum this position.
 Use 0 to don't test moved. Default is 48.0.

 DistPitch Object turned minimum this angle (in degrees).
 Use 0 to don't test this angel. Default is 40.0.

 DistYaw Object turned minimum this angle (in degrees).
 Use 0 to don't test this angel. Default is 0.0.

 DistRoll Object turned minimum this angle (in degrees).
 Use 0 to don't test this angel. Default is 40.0.

 NOTE: The number of moved objects are picked up with 'Game.LastResult'

 'Game.LastResult' has the value of -1 if <targetname> was no
 physic_trigger_reset entity or if <targetname> does not exist.

/**
 script command: speaksetup language RelRate RelPitch RelRange roughness
 flutter clarity echo_delay echo_amp

 Setup speak of this actor.
 This setup's are used for following speak commands.

 <language> Language to speak. See the
 espeak-data\docs\languages.html
 for languages.
 Example: en for english, de for german.

 <RelRate> speed of speak
 Sprechgeschwindigkeit
 range -100 to 100, default is 0

 <RelPitch> base sound frequence
 Tonhöhe
 range -100 to 100, default is 0

 <RelRange> base sound frequence variation
 Variation der Tonhöhe
 range -100 to 100, default is 0

 <roughness> roughness
 Rauhigkeit der Stimme
 range -1, 0 to 7, default is -1

 <flutter> flutter
 Flattern der Stimme
 range -1, 0 to 20, default is -1

 <clarity> clarity
 Deutlichkeit der Stimme
 range -1, 0 to 5, default is -1

 <echo_delay> echo delay im ms (1/1000 seconds)
 Echo der Stimme in ms (1/1000 Sekunden)
 range -1, 0 to 250, default is -1

 <echo_amp> Echo Amplitude
 Echo Amplitude
 range -1, 0 to 100, default is -1

 NOTE: * This command use the eSpeak software, a speech synthesizer for
 English and other languages.
 See http://espeak.sourceforge.net

 * Until distribution V1.01 of Ya3dag, the espeak-data subdirectory
 was missing. This is needed to hear something from the speak
 software.

 * There are also console commands to play around with speak.
 SpeakList to enumerat all voices.
 SpeakVoice to setup a voide.
 Speak speak a text.

/**
 script command: speak Text [<volume>] [<attenuation>]

 The actor speaks the text

 Examples: speak "out of my way"

 <volume> range 0.0 to 1.0, default is 1.0

 <attenuation> range 0.0 to 4.0, default is ATTN_IDLE
 0.0 ATTN_NONE full volume the entire level
 1.0 ATTN_NORM
 2.0 ATTN_IDLE
 3.0 ATTN_STATIC diminish very rapidly with distance

/**
 script command: InventoryGive <name of item> <amount>
 InventoryGive StartupItems

 give item to actor

 <name of item> is the classname of an item (ammo_rockets, item_quad, ...)

 <amount> if <amount> is given in the argument list, the number
 of items is given to the actor.
 <amount> defaults to 1.

 StartupItems Using the text 'StartupItems' in place of <name of item>,
 all items give at startup to the actor are transfert
 to the inventory.

 NOTE: the amount can be picked up with 'Game.LastResult'
 'Game.LastResult' has the value of -1 if item is not existing

/**
 script command: InventoryRemove <name of item> <amount>

 remove item to actor

 <name of item> is the classname of an item (ammo_rockets, item_quad, ...)

 <amount> if <amount> is given in the argument list, the number
 of items is removed from the actor.
 <amount> defaults to 1.

 NOTE: the amount can be picked up with 'Game.LastResult'
 'Game.LastResult' has the value of -1 if item is not existing

/**
 script command: InventoryTest <name of item>

 test item of actor

 <name of item> is the classname of an item (ammo_rockets, item_quad, ...)
 With 'Game.LastResult', the amount of items in the actors
 inventory can be picked up.
 'Game.LastResult' has the value of -1 if item is not existing.

 CountUsedSlots 'Game.LastResult' returns the number of item slots which

 have any items.

/**
 script command: VoxBlockTrigger <BlockOrigin> <BlockState>

 Trigger a block.
 This change a block state to on/off (or close/open). Use this for
 doors, gates, chests, ...

 <BlockOrigin> A number.
 1: Player triggers a block in the near, use the selected block.
 2: Trigger the selected block.
 3: Recalculate the origin of this actor as Block address.
 This is useful if a script is associated to a block.
 4: Use selected meta data block.

 <BlockState> A number.
 -1: Toggle on/off (or close/open).
 0: Set to off (or close).
 1: Set to on (or open).
 xx: Other positive values may depend form the type of
 the block.

/**
 script command: VoxBlockSet <BlockOrigin> <BlockName> <param2>

 Set a block on a specific block address.

 <BlockOrigin> A number.
 1: Player triggers a block in the near, use the selected block.
 2: Trigger the selected block.
 3: Recalculate the origin of this actor as Block address.
 This is useful if a script is associated to a block.
 4: Use selected meta data block.

 <BlockName> Name of the block to set.
 Example: "Cobblestone"
 If "-" is used as block name, the block name is don't care.
 This is used to modify the 'param2' of the block.
 Also '_' characters in the block name are replaced by
 ' ' characters. This happens if the item name of a block
 is used to construct a block name.

 <param2> A number.
 Use this as 'param2' of the block.

 Game.LastResult: 0 Set the block
 < 0 Error

/**
 script command: VoxBlockTest <BlockOrigin> <x> <y> <z> <WhatToTest>
 [<Argument1>] [<Argument2>]

 Some block test things.

 <BlockOrigin> A number.
 1: Player triggers a block in the near, use the selected block.
 2: Trigger the selected block.
 3: Recalculate the origin of this actor as Block address.
 This is useful if a script is associated to a block.
 4: Use selected meta data block.

 <x> <y> <z> Offset to block <BlockOrigin> in blocks.
 This are three numbers added to the block origin.
 The result is used as 'test position'.

 <WhatToTest> Specify what to test.
 This is a string.
 * IsAir
 Is the 'test position' an air block.
 'Game.LastResult' is true if there is an air block.
 * GropGrow

 Try to increase the degree of ripeness a crop
 (carrot, potato, wheat ...).
 * CampfireCook
 'Argument1' is the name of item which is cooked.
 Try to add this to a campfire.
 The item 'Argument2' is dropped after cooking.

 <Argument1> Additional argument.
 Usage depends from <WhatToTest>.
 Example: "Cobblestone"

 <Argument2> Additional argument.
 Usage depends from <WhatToTest>.
 Example: "Cobblestone"

/**
 script command: VoxBlockParam <BlockOrigin> <x> <y> <z> <WhatToDo> <param>

 Block parameter modification.

 <BlockOrigin> A number.
 1: Player triggers a block in the near, use the selected block.
 2: Trigger the selected block.
 3: Recalculate the origin of this actor as Block address.
 This is useful if a script is associated to a block.
 4: Use selected meta data block.

 <x> <y> <z> Offset to block <BlockOrigin> in blocks.
 This are three numbers added to the block origin.
 The result is used as 'block position'.

 <WhatToDo> Specify what to do.
 This is a string.
 * All
 Access all param2 bits.
 * Color
 Access paramtype2 'color' parameter value.
 * StateBit
 Access state bit for blocks with drawtype 'normal'
 or 'nodebox' and set DrawSubType 32 (Switch between 1. and 2. model).
 A 'param' value of 0 or 1 sets the new state, an other value
 toggles the state bit.

 <param> Parameter value.
 This is an integer number.
 < 0: Pick value, no modify of parameter.
 >= 0: Change parameter value

 Game.LastResult: >= 0 The picked or modified parameter value
 < 0 Error

/**
 script command: VoxBlockAction <BlockOrigin> <WhatToDo>

 Block parameter modification.

 <BlockOrigin> A number.
 1: Player triggers a block in the near, use the selected block.
 2: Trigger the selected block.
 3: Recalculate the origin of this actor as Block address.
 This is useful if a script is associated to a block.
 4: Use selected meta data block.

 <WhatToDo> Specify what to do.
 This is a string.
 * Teleport
 The block must be a teleporter block.
 Teleport the nearest player to the next reachable teleporter.
 Game.LastResult 0: got a teleporter
 1: no teleporter found

 Game.LastResult: >= 0 The picked or modified parameter value
 < 0 Error

